
Tsuyoshi Takahashi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9550894/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Activation of Protease and Luciferase Using Engineered Nostoc punctiforme PCC73102 DnaE Intein with Altered Split Position. ChemBioChem, 2021, 22, 577-584.	2.6	4
2	Detecting ligand–protein interactions inside cells using reactive peptide tags and split luciferase. Chemical Communications, 2021, 57, 9906-9909.	4.1	2
3	Affinity Control of Monosaccharide Conjugated Peptides against Lectins with a Set of Amino Acid Substitutions on α-Helical Structures. Bioconjugate Chemistry, 2020, 31, 2533-2540.	3.6	2
4	Generation of Active Protease Depending on Peptide-Protein Interactions Using Interaction-Dependent Native Chemical Ligation and Protein Trans-Splicing. Bulletin of the Chemical Society of Japan, 2019, 92, 1767-1772.	3.2	5
5	Inhibiting Aggregation of β-Amyloid by Folded and Unfolded Forms of Fimbrial Protein of Gram-Negative Bacteria. ChemistrySelect, 2017, 2, 9058-9062.	1.5	0
6	Interaction–dependent native chemical ligation and protein trans–splicing (IDNCLâ€PTS) for detection and visualization of ligand–protein interactions. ChemistrySelect, 2016, 1, 1768-1772.	1.5	4
7	Construction of Sensor Protein That Responses to Amyloid β-Peptide Oligomers and Demonstration of Screening Capabilities for Oligomer Inhibitors. Chemistry Letters, 2015, 44, 67-69.	1.3	0
8	Interaction-dependent Native Chemical Ligation and Enzyme Reconstitution for Detection of Peptide–Peptide Interaction. Chemistry Letters, 2014, 43, 1357-1359.	1.3	2
9	Modification of a Small βâ€Barrel Protein, To Give Pseudoâ€Amyloid Structures, Inhibits Amyloid βâ€Peptide Aggregation. Chemistry - A European Journal, 2013, 19, 4525-4531.	3.3	6
10	Construction of proteins with molecular recognition capabilities using Â3Â3 de novo protein scaffolds. Protein Engineering, Design and Selection, 2013, 26, 705-711.	2.1	2
11	Cell-adhesive hydrogels composed of peptide nanofibers responsive to biological ions. Polymer Journal, 2012, 44, 651-657.	2.7	40
12	Effects of Group 3 LEA protein model peptides on desiccation-induced protein aggregation. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2012, 1824, 891-897.	2.3	49
13	FRET detection of amyloid β-peptide oligomerization using a fluorescent protein probe presenting a pseudo-amyloid structure. Chemical Communications, 2012, 48, 1568-1570.	4.1	34
14	Gold nanoparticles conjugated with monosaccharide-modified peptide for lectin detection. Bioorganic and Medicinal Chemistry Letters, 2012, 22, 6825-6827.	2.2	20
15	Terminal Sequence Importance of De Novo Proteins from Binary- Patterned Library: Stable Artificial Proteins with 11- or 12-Amino Acid Alphabet. Protein and Peptide Letters, 2012, 19, 673-679.	0.9	1
16	A novel β-loop scaffold of phage-displayed peptides for highly specific affinities. Molecular BioSystems, 2011, 7, 2558.	2.9	8
17	A Novel Peptide Array Using a Phage Display System for Protein Detection. Chemistry Letters, 2011, 40, 508-509.	1.3	6
18	Designed Short Peptides that Form Amyloid‣ike Fibrils in Coassembly with Amyloid βâ€Peptide (Aβ) Decrease the Toxicity of Aβ to Neuronal PC12 Cells. ChemBioChem, 2010, 11, 1525-1530.	2.6	10

2

Тѕичоѕні Таканаѕні

#	Article	IF	CITATIONS
19	Peptide Nanofibers Modified with a Protein by Using Designed Anchor Molecules Bearing Hydrophobic and Functional Moieties. Chemistry - A European Journal, 2010, 16, 6644-6650.	3.3	10
20	Design and conformational analysis of natively folded βâ€hairpin peptides stabilized by nucleobase interactions. Biopolymers, 2010, 94, 830-842.	2.4	5
21	Rational design of amyloid β peptide–binding proteins: Pseudoâ€Aβ βâ€sheet surface presented in green fluorescent protein binds tightly and preferentially to structured Aβ. Proteins: Structure, Function and Bioinformatics, 2010, 78, 336-347.	2.6	17
22	Desiccation-Induced Structuralization and Glass Formation of Group 3 Late Embryogenesis Abundant Protein Model Peptides. Biochemistry, 2010, 49, 1093-1104.	2.5	102
23	Selection and structural analysis of <i>de novo</i> proteins from an α3β3 genetic library. Protein Science, 2009, 18, 384-398.	7.6	14
24	Affinity-Based Screening of Peptides Recognizing Assembly States of Self-Assembling Peptide Nanomaterials. Journal of the American Chemical Society, 2009, 131, 14434-14441.	13.7	38
25	RNA aptamers selected against amyloid β-peptide (Aβ) inhibit the aggregation of Aβ. Molecular BioSystems, 2009, 5, 986.	2.9	62
26	Peptide and Protein Mimetics Inhibiting Amyloid β-Peptide Aggregation. Accounts of Chemical Research, 2008, 41, 1309-1318.	15.6	215
27	1P-068 The Effect of Model Peptides for Group-3 Late Embryogenesis Abundant (G3LEA) Proteins on Protein Aggregation(The 46th Annual Meeting of the Biophysical Society of Japan). Seibutsu Butsuri, 2008, 48, S31.	0.1	0
28	3P024 Model study of the desiccation-induced structural transformations of Group-3 Late Embryogenesis Abundant (G3LEA) proteins(Hemeproteins. Electronic states. Proteins-structure and) Tj ETQq0 C	0 ngBiT/C	ivenbock 10 Tf
29	Embedding the Amyloid β-Peptide Sequence in Green Fluorescent Protein Inhibits Aβ Oligomerization. ChemBioChem, 2007, 8, 985-988.	2.6	20
30	Design of Peptides That Form Amyloidâ€Like Fibrils Capturing Amyloid β1–42 Peptides. Chemistry - A European Journal, 2007, 13, 7745-7752.	3.3	28
31	Interactions between peptides containing nucleobase amino acids and T7 phages displayingS. cerevisiae proteins. Biopolymers, 2007, 88, 131-140.	2.4	26
32	Design of Artificial Proteins and Peptides Targeting to Amyloid .BETA. Peptide (A.BETA.) and Control of A.BETA. Aggregation. Seibutsu Butsuri, 2007, 47, 228-234.	0.1	0
33	Binding Modes of the Precursor of Adenovirus Major Core Protein VII to DNA and Template Activating Factor I: Implication for the Mechanism of Remodeling of the Adenovirus Chromatinâ€. Biochemistry, 2006, 45, 303-313.	2.5	21
34	Utilization of L-α-Nucleobase Amino Acids (NBAs) as Protein Engineering Tools: Construction of NBA-Modified HIV-1 Protease Analogues and Enhancement of Dimerization Induced by Nucleobase Interaction. ChemBioChem, 2006, 7, 729-732.	2.6	8
35	Construction and Control of Self-Assembly of Amyloid and Fibrous Peptides. Bulletin of the Chemical Society of Japan, 2005, 78, 572-590.	3.2	12
36	A Peptide-Cyclodextrin Hybrid System Capable of Detecting Guest Molecules Utilizing Fluorescence Resonance Energy Transfer. Macromolecular Rapid Communications, 2004, 25, 577-581.	3.9	11

Тѕичоѕні Таканаѕні

#	Article	IF	CITATIONS
37	De Novo Design of Peptides withl-α-Nucleobase Amino Acids and Their Binding Properties to the P22 boxB RNA and Its Mutants. Bioconjugate Chemistry, 2004, 15, 694-698.	3.6	14
38	Inhibition of peptide amyloid formation by cationic peptides with homologous sequences. Bioorganic and Medicinal Chemistry Letters, 2003, 13, 4051-4054.	2.2	7
39	Complementary Nucleobase Interaction Enhances Peptide-Peptide Recognition and Self-Replicating Catalysis. Chemistry - A European Journal, 2003, 9, 4829-4837.	3.3	37
40	Nucleobase Amino Acids Incorporated into the HIV-1 Nucleocapsid Protein Increased the Binding Affinity and Specificity for a Hairpin RNA. ChemBioChem, 2002, 3, 543.	2.6	14
41	HIV Rev peptides conjugated with peptide nucleic acids and their efficient binding to RRE RNA. Bioorganic and Medicinal Chemistry Letters, 2001, 11, 1169-1172.	2.2	9
42	Construction of peptides with nucleobase amino acids. Bioorganic and Medicinal Chemistry, 2001, 9, 991-1000.	3.0	26
43	Construction of peptide conjugates with peptide nucleic acids containing an anthracene probe and their interactions with DNA. Bioorganic and Medicinal Chemistry, 2001, 9, 1115-1121.	3.0	3
44	Construction of RNA-Binding Proteins Having Nucleobase Amino Acids Based on HIV-1 Nucleocapsid Protein. , 2001, , 518-519.		0
45	Construction of HIV Rev peptides containing peptide nucleic acid that bind HIV RRE IIB RNA. Bioorganic and Medicinal Chemistry Letters, 2000, 10, 377-379.	2.2	11
46	Construction of two-stranded α-helix peptides based on influenza virus M1 protein selectively bound to RNA. Bioorganic and Medicinal Chemistry Letters, 2000, 10, 2227-2230.	2.2	3
47	Design of a nucleobase-conjugated peptide that recognizes HIV-1 RRE IIB RNA with high affinity and specificity. Chemical Communications, 2000, , 349-350.	4.1	13