Lorenzo Iorio

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9550553/publications.pdf Version: 2024-02-01

LOPENZO LODIO

#	Article	IF	CITATIONS
1	The Effect of Post-Newtonian Spin Precessions on the Evolution of Exomoons' Obliquity. Astronomical Journal, 2022, 163, 55.	4.7	1
2	Why Is the Mean Anomaly at Epoch Not Used in Tests of Non-Newtonian Gravity?. Universe, 2022, 8, 203.	2.5	0
3	On the 2PN Pericentre Precession in the General Theory of Relativity and the Recently Discovered Fast-Orbiting S-Stars in Sgr A*. Universe, 2021, 7, 37.	2.5	9
4	Post-Editorial of "Universe: 5th Anniversary―Special Volume. Universe, 2021, 7, 120.	2.5	0
5	The Impact of Classical and General Relativistic Obliquity Precessions on the Habitability of Circumstellar Neutron Stars' Planets. Astronomical Journal, 2021, 162, 51.	4.7	0
6	The impact of the spin–orbit misalignment and of the spin of B on the Lense–Thirring orbital precessions of the double pulsar PSRÅJ0737–3039A/B. Monthly Notices of the Royal Astronomical Society, 2021, 507, 421-430.	4.4	1
7	On the 2PN Periastron Precession of the Double Pulsar PSR J0737–3039A/B. Universe, 2021, 7, 443.	2.5	2
8	A comment on †Lense–Thirring frame dragging induced by a fast-rotating white dwarf in a binary pulsar system' by V. Venkatraman Krishnan etĂal Monthly Notices of the Royal Astronomical Society, 2020, 495, 2777-2785.	4.4	10
9	Effects of General Relativistic Spin Precessions on the Habitability of Rogue Planets Orbiting Supermassive Black Holes. Astrophysical Journal, 2020, 896, 82.	4.5	1
10	Is There Still Something Left That Gravity Probe B Can Measure?. Universe, 2020, 6, 85.	2.5	2
11	Probing a <i>r</i> ^{â^'<i>n</i>} modification of the Newtonian potential with exoplanets. Journal of Cosmology and Astroparticle Physics, 2020, 2020, 042-042.	5.4	15
12	Revisiting the 2PN Pericenter Precession in View of Possible Future Measurements. Universe, 2020, 6, 53.	2.5	11
13	New general relativistic contributions to Mercury's orbital elements and their measurability. European Physical Journal C, 2020, 80, 1.	3.9	4
14	What Would Happen if We Were About 1 pc Away from a Supermassive Black Hole?. Astrophysical Journal, 2020, 889, 152.	4.5	7
15	The Short-period S-stars S4711, S62, S4714 and the Lense–Thirring Effect due to the Spin of Sgr A*. Astrophysical Journal, 2020, 904, 186.	4.5	9
16	A comment on "Can observations inside the Solar System reveal the gravitational properties of the quantum vacuum?―by D.S. Hajdukovic. Astrophysics and Space Science, 2019, 364, 1.	1.4	5
17	A HERO for General Relativity. Universe, 2019, 5, 165.	2.5	7
18	On the mean anomaly and the mean longitude in tests of post-Newtonian gravity. European Physical Journal C, 2019, 79, 1.	3.9	5

#	Article	IF	CITATIONS
19	Classical and general relativistic post-Keplerian effects in binary pulsars hosting fast rotating main sequence stars. European Physical Journal C, 2019, 79, 1.	3.9	0
20	Are the planetary orbital effects of the solar dark matter wake detectable?. Monthly Notices of the Royal Astronomical Society, 2019, 489, 723-726.	4.4	0
21	Calculation of the Uncertainties in the Planetary Precessions with the Recent EPM2017 Ephemerides and their Use in Fundamental Physics and Beyond. Astronomical Journal, 2019, 157, 220.	4.7	14
22	A Post-Newtonian Gravitomagnetic Effect on the Orbital Motion of a Test Particle around Its Primary Induced by the Spin of a Distant Third Body. Universe, 2019, 5, 87.	2.5	2
23	Measuring the De Sitter precession with a new Earthâ $\in M$ s satellite to the \$\$simeq 10^{-5}\$\$ â‰f 10 - 5 level: a proposal. European Physical Journal C, 2019, 79, 1.	3.9	1
24	The post-Newtonian gravitomagnetic spin-octupole moment of an oblate rotating body and its effects on an orbiting test particle; are they measurable in the Solar system?. Monthly Notices of the Royal Astronomical Society, 2019, 484, 4811-4832.	4.4	9
25	Measuring general relativistic dragging effects in the Earth's gravitational field with ELXIS: a proposal. Classical and Quantum Gravity, 2019, 36, 035002.	4.0	4
26	Analytically calculated post-Keplerian range and range-rate perturbations: the solar Lense–Thirring effect and BepiColombo. Monthly Notices of the Royal Astronomical Society, 2018, 476, 1811-1825.	4.4	12
27	On Testing Frame-Dragging with LAGEOS and a Recently Announced Geodetic Satellite . Universe, 2018, 4, 113.	2.5	7
28	Constraining some râ^'n extra-potentials in modified gravity models with LAGEOS-type laser-ranged geodetic satellites. Journal of Cosmology and Astroparticle Physics, 2018, 2018, 021-021.	5.4	6
29	Is it possible to measure new general relativistic third-body effects on the orbit of Mercury with BepiColombo?. European Physical Journal C, 2018, 78, 1.	3.9	3
30	Perspectives on Constraining a Cosmological Constant-Type Parameter with Pulsar Timing in the Galactic Center. Universe, 2018, 4, 59.	2.5	14
31	ON THE NEWTONIAN AND SPIN-INDUCED PERTURBATIONS FELT BY THE STARS ORBITING AROUND THE MASSIVE BLACK HOLE IN THE GALACTIC CENTER. Astrophysical Journal, 2017, 834, 198.	4.5	23
32	A comment on "A test of general relativity using the LARES and LAGEOS satellites and a GRACE Earth gravity model― by I. Ciufolini et al European Physical Journal C, 2017, 77, 1.	3.9	13
33	Are we close to putting the anomalous perihelion precessions from Verlinde's emergent gravity to the test?. European Physical Journal C, 2017, 77, 1.	3.9	0
34	On the Post-Keplerian Corrections to the Orbital Periods of a Two-body System and Their Application to the Galactic Center. Astrophysical Journal, 2017, 839, 3.	4.5	18
35	Preliminary constraints on the location of the recently hypothesized new planet of the Solar System from planetary orbital dynamics. Astrophysics and Space Science, 2017, 362, 1.	1.4	15
36	Post-Keplerian effects on radial velocity in binary systems and the possibility of measuring General Relativity with the star S2 in 2018. Monthly Notices of the Royal Astronomical Society, 2017, 472, 2249-2262.	4.4	25

#	Article	IF	CITATIONS
37	Post-Keplerian perturbations of the orbital time shift in binary pulsars: an analytical formulation with applications to the galactic center. European Physical Journal C, 2017, 77, 1.	3.9	15
38	Is the Recently Proposed Mars-Sized Perturber at 65–80 AU Ruled Out by the Cassini Ranging Data?. Frontiers in Astronomy and Space Sciences, 2017, 4, .	2.8	1
39	Constraining the Schwarzschild–de Sitter solution in models of modified gravity. Physics of the Dark Universe, 2016, 13, 111-120.	4.9	30
40	The impact of the orbital decay of the LAGEOS satellites on the frame-dragging tests. Advances in Space Research, 2016, 57, 493-498.	2.6	8
41	Post-Keplerian corrections to the orbital periods of a two-body system and their measurability. Monthly Notices of the Royal Astronomical Society, 2016, 460, 2445-2452.	4.4	13
42	Does Newton's gravitational constant vary sinusoidally with time? Orbital motions say no. Classical and Quantum Gravity, 2016, 33, 045004.	4.0	13
43	Accurate characterization of the stellar and orbital parameters of the exoplanetary system WASP-33 b from orbital dynamics. Monthly Notices of the Royal Astronomical Society, 2016, 455, 207-213.	4.4	39
44	Post-Newtonian direct and mixed orbital effects due to the oblateness of the central body. International Journal of Modern Physics D, 2015, 24, 1550067.	2.1	21
45	Universe: An International Multidisciplinary Open Access Journal. Universe, 2015, 1, 1-5.	2.5	2
46	Editorial for the Special Issue 100 Years of Chronogeometrodynamics: The Status of the Einstein's Theory of Gravitation in Its Centennial Year. Universe, 2015, 1, 38-81.	2.5	119
47	Gravitational anomalies in the solar system?. International Journal of Modern Physics D, 2015, 24, 1530015.	2.1	85
48	Constraining <i>f</i> (<i>T</i>) gravity in the Solar System. Journal of Cosmology and Astroparticle Physics, 2015, 2015, 021-021.	5.4	60
49	Orbital effects due to gravitational induction. General Relativity and Gravitation, 2015, 47, 1.	2.0	1
50	Orbital motions as gradiometers for post-Newtonian tidal effects. Frontiers in Astronomy and Space Sciences, 2014, 1, .	2.8	14
51	Two-Body Orbit Expansion Due to Time-Dependent Relative Acceleration Rate of the Cosmological Scale Factor. Galaxies, 2014, 2, 13-21.	3.0	6
52	The Lingering Anomalous Secular Increase of the Eccentricity of the Orbit of the Moon: Further Attempts of Explanations of Cosmological Origin. Galaxies, 2014, 2, 259-262.	3.0	9
53	Orbital Motions and the Conservation-Law/Preferred-Frame α3 Parameter. Galaxies, 2014, 2, 482-495.	3.0	2
54	CONSTRAINING THE PREFERRED-FRAME $\hat{i}\pm 1$, $\hat{i}\pm 2$ PARAMETERS FROM SOLAR SYSTEM PLANETARY PRECESSIONS. International Journal of Modern Physics D, 2014, 23, 1450006.	2.1	37

#	Article	IF	CITATIONS
55	Preliminary bounds of the gravitational local position invariance from Solar system planetary precessions. Monthly Notices of the Royal Astronomical Society, 2014, 437, 3482-3489.	4.4	28
56	Modified theories of gravity with nonminimal coupling and orbital particle dynamics. Classical and Quantum Gravity, 2014, 31, 085003.	4.0	16
57	Commentary to "LARES successfully launched in orbit: Satellite and mission description―by A. Paolozzi and I. Ciufolini. Acta Astronautica, 2014, 95, 174-175.	3.2	0
58	<i>Withdrawal:</i> â€~A new type of misconduct in the field of the physical sciences: The case of the pseudonyms used by I. Ciufolini to anonymously criticize other people's works on arXiv' by L. Iorio. Journal of the Association for Information Science and Technology, 2014, 65, 2375-2375.	2.9	2
59	Planet X revamped after the discovery of the Sedna-like object 2012 VP113?. Monthly Notices of the Royal Astronomical Society: Letters, 2014, 444, L78-L79.	3.3	48
60	A flyby anomaly for Juno? Not from standard physics. Advances in Space Research, 2014, 54, 2441-2445.	2.6	14
61	ON A RECENT PRELIMINARY STUDY FOR THE MEASUREMENT OF THE LENSE–THIRRING EFFECT WITH THE GALILEO SATELLITES. International Journal of Modern Physics D, 2014, 23, 1450028.	2.1	3
62	A Possible Test of theJ2câ^'2General Relativistic Orbital Effects with Juno. Journal of Physics: Conference Series, 2014, 490, 012238.	0.4	0
63	2nd International Conference on Mathematical Modeling in Physical Sciences 2013 (IC-MSQUARE 2013). Journal of Physics: Conference Series, 2014, 490, 011001.	0.4	0
64	Perspectives on effectively constraining the location of a massive trans-Plutonian object with the New Horizons spacecraft: a sensitivity analysis. Celestial Mechanics and Dynamical Astronomy, 2013, 116, 357-366.	1.4	12
65	Novel considerations about the error budget of the LAGEOS-based tests of frame-dragging with GRACE geopotential models. Acta Astronautica, 2013, 91, 141-148.	3.2	51
66	LETSGO: A spacecraft-based mission to accurately measure the solar angular momentum with frame-dragging. Acta Astronautica, 2013, 86, 149-157.	3.2	3
67	A possible new test of general relativity with Juno. Classical and Quantum Gravity, 2013, 30, 195011.	4.0	25
68	Local cosmological effects of the order of H in the orbital motion of a binary system. Monthly Notices of the Royal Astronomical Society, 2013, 429, 915-922.	4.4	13
69	Constraints on a MOND effect for isolated aspherical systems in the deep Newtonian regime from orbital motions. Classical and Quantum Gravity, 2013, 30, 165018.	4.0	18
70	A uniform treatment of the orbital effects due to a violation of the strong equivalence principle in the gravitational Stark-like limit. Classical and Quantum Gravity, 2013, 30, 025006.	4.0	5
71	Exact Expressions for the Pericenter Precession Caused by Some Dark Matter Distributions and Constraints on Them from Orbital Motions in the Solar System, in the Double Pulsar and in the Galactic Center. Galaxies, 2013, 1, 6-30.	3.0	26
72	A Closer Earth and the Faint Young Sun Paradox: Modification of the Laws of Gravitation or Sun/Earth Mass Losses?. Galaxies, 2013, 1, 192-209.	3.0	30

#	Article	IF	CITATIONS
73	Orbital effects of Lorentz-violating standard model extension gravitomagnetism around a static body: a sensitivity analysis. Classical and Quantum Gravity, 2012, 29, 175007.	4.0	49
74	Constraints on Galileon-induced precessions from solar system orbital motions. Journal of Cosmology and Astroparticle Physics, 2012, 2012, 001-001.	5.4	37
75	ORBITAL EFFECTS OF A TIME-DEPENDENT PIONEER-LIKE ANOMALOUS ACCELERATION. Modern Physics Letters A, 2012, 27, 1250071.	1.2	9
76	Erratum to "Solar System Motions and the Cosmological Constant: A New Approach― Advances in Astronomy, 2012, 2012, 1-1.	1.1	1
77	Constraining the Angular Momentum of the Sun with Planetary Orbital Motions and General Relativity. Solar Physics, 2012, 281, 815-826.	2.5	59
78	Solar system constraints on <i>f</i> (<i>T</i>) gravity. Monthly Notices of the Royal Astronomical Society, 2012, 427, 1555-1561.	4.4	199
79	LOWER BOUNDS OF CHARACTERISTIC SCALE OF TOPOLOGICAL MODIFICATION OF THE NEWTONIAN GRAVITATION. International Journal of Modern Physics D, 2012, 21, 1250048.	2.1	0
80	Dynamical orbital effects of general relativity on the satellite-to-satellite range and range-rate in the GRACE mission: A sensitivity analysis. Advances in Space Research, 2012, 50, 334-345.	2.6	12
81	Constraints from orbital motions around the Earth of the environmental fifth-force hypothesis for the OPERA superluminal neutrino phenomenology. Journal of High Energy Physics, 2012, 2012, 1.	4.7	25
82	Constraining the electric charges of some astronomical bodies in Reissner–Nordström spacetimes and generic r â^2-type power-law potentials from orbital motions. General Relativity and Gravitation, 2012, 44, 1753-1767.	2.0	45
83	Model-independent constraints on r-3 extra-interactions from orbital motions. Annalen Der Physik, 2012, 524, 371-377.	2.4	16
84	Orbital Perturbations Due to Massive Rings. Earth, Moon and Planets, 2012, 108, 189-217.	0.6	12
85	Impact of a Pioneer/Rindler-type acceleration on the Oort Cloud. Monthly Notices of the Royal Astronomical Society, 2012, 419, 2226-2232.	4.4	21
86	Orbital effects of non-isotropic mass depletion of the atmospheres of evaporating hot Jupiters in extrasolar systems. New Astronomy, 2012, 17, 356-361.	1.8	27
87	Constraints on the location of a putative distant massive body in the Solar System from recent planetary data. Celestial Mechanics and Dynamical Astronomy, 2012, 112, 117-130.	1.4	62
88	General relativistic spin-orbit and spin–spin effects on the motion of rotating particles in an external gravitational field. General Relativity and Gravitation, 2012, 44, 719-736.	2.0	51
89	Perturbed stellar motions around the rotating black hole in Sgr <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:msup><mml:mi mathvariant="normal">A<mml:mo>*</mml:mo></mml:mi </mml:msup>for a generic orientation of its spin axis. Physical Review D. 2011. 84.</mml:math 	4.7	65
90	Classical and relativistic long-term time variations of some observables for transiting exoplanets. Monthly Notices of the Royal Astronomical Society, 2011, 411, 167-183.	4.4	51

#	Article	IF	CITATIONS
91	Long-term classical and general relativistic effects on the radial velocities of the stars orbiting Sgr A*. Monthly Notices of the Royal Astronomical Society, 2011, 411, 453-463.	4.4	43
92	On the anomalous secular increase of the eccentricity of the orbit of the Moon. Monthly Notices of the Royal Astronomical Society, 2011, 415, 1266-1275.	4.4	58
93	Orbital effects of spatial variations of fundamental coupling constants. Monthly Notices of the Royal Astronomical Society, 2011, 417, 2392-2400.	4.4	8
94	Gravitomagnetism and the Earth–Mercury range. Advances in Space Research, 2011, 48, 1403-1410.	2.6	3
95	Some considerations on the present-day results for the detection of frame-dragging after the final outcome of GP-B. Europhysics Letters, 2011, 96, 30001.	2.0	24
96	The twin paradox and Mach's principle. European Physical Journal Plus, 2011, 126, 1.	2.6	7
97	How accurate is the cancelation of the first even zonal harmonic of the geopotential in the present and future LAGEOS-based Lense-Thirring tests?. General Relativity and Gravitation, 2011, 43, 1697-1706.	2.0	11
98	Classical and relativistic node precessional effects in WASP-33b and perspectives for detecting them. Astrophysics and Space Science, 2011, 331, 485-496.	1.4	33
99	Phenomenology of the Lense-Thirring effect in the solar system. Astrophysics and Space Science, 2011, 331, 351-395.	1.4	173
100	Erratum to "Juno, the angular momentum of Jupiter and the Lense–Thirring effect―[New Astronomy 15 (2010) 554–560]. New Astronomy, 2011, 16, 17-18.	1.8	1
101	Observational constraints on spatial anisotropy of G from orbital motions. Classical and Quantum Gravity, 2011, 28, 225027.	4.0	8
102	AN EMPIRICAL EXPLANATION OF THE ANOMALOUS INCREASES IN THE ASTRONOMICAL UNIT AND THE LUNAR ECCENTRICITY. Astronomical Journal, 2011, 142, 68.	4.7	30
103	HOÅ [~] AVA–LIFSHITZ GRAVITY: TIGHTER CONSTRAINTS FOR THE KEHAGIAS–SFETSOS SOLUTION FROM NEW SOLAR SYSTEM DATA. International Journal of Modern Physics D, 2011, 20, 1079-1093.	2.1	21
104	EFFECTS OF STANDARD AND MODIFIED GRAVITY ON INTERPLANETARY RANGES. International Journal of Modern Physics D, 2011, 20, 181-232.	2.1	9
105	"IMPRINTING" IN GENERAL RELATIVITY TESTS?. International Journal of Modern Physics D, 2011, 20, 1945-1948.	2.1	0
106	Solar system constraints on a Rindler-type extra-acceleration from modified gravity at large distances. Journal of Cosmology and Astroparticle Physics, 2011, 2011, 019-019.	5.4	14
107	Gravitomagnetism and Gravitational Waves. The Open Astronomy Journal, 2011, 4, 84-97.	1.6	6
108	On Some Critical Issues of the LAGEOS-Based Tests of the Lense-Thirring Effect. Journal of Modern Physics, 2011, 02, 210-218.	0.6	1

#	Article	IF	CITATIONS
109	Conservative evaluation of the uncertainty in the LAGEOS-LAGEOS II Lense-Thirring test. Open Physics, 2010, 8, .	1.7	11
110	On the Lense-Thirring test with the Mars Global Surveyor in the gravitational field of Mars. Open Physics, 2010, 8, .	1.7	19
111	Constraining the relative inclinations of the planets B and C of the millisecond pulsar PSR B1257+12. Journal of Astrophysics and Astronomy, 2010, 31, 147-153.	1.0	22
112	Solar System planetary tests of \$\${dot c/c}\$\$. General Relativity and Gravitation, 2010, 42, 199-208.	2.0	6
113	Gravitomagnetic time-varying effects on the motion of a test particle. General Relativity and Gravitation, 2010, 42, 2393-2402.	2.0	5
114	Juno, the angular momentum of Jupiter and the Lense–Thirring effect. New Astronomy, 2010, 15, 554-560.	1.8	30
115	Does the Neptunian system of satellites challenge a gravitational origin for the Pioneer anomaly?. Monthly Notices of the Royal Astronomical Society, 2010, , no-no.	4.4	7
116	Galactic orbital motions in the dark matter, modified Newtonian dynamics and modified gravity scenarios. Monthly Notices of the Royal Astronomical Society, 2010, 401, 2012-2020.	4.4	13
117	Anthropic constraints on the cosmological constant from the Sun's motion through the Milky Way. Monthly Notices of the Royal Astronomical Society, 2010, 403, 1469-1473.	4.4	8
118	A Priori "Imprinting―of General Relativity Itself on Some Tests of It?. Advances in Astronomy, 2010, 2010, 1-5.	1.1	0
119	PHENOMENOLOGICAL CONSTRAINTS ON THE KEHAGIAS–SFETSOS SOLUTION IN THE HOÅ~AVA–LIFSHITZ GRAVITY FROM SOLAR SYSTEM ORBITAL MOTIONS. International Journal of Modern Physics A, 2010, 25, 5399-5408.	1.5	32
120	Solar system constraints on planetary Coriolis-type effects induced by rotation of distant masses. Journal of Cosmology and Astroparticle Physics, 2010, 2010, 030-030.	5.4	5
121	The Impact of the External Field Effect in the MOdified Newtonian Dynamics on Solar System's Orbits. , 2010, , .		2
122	Phenomenological constraints on accretion of non-annihilating dark matter on the PSR B1257+12 pulsar from orbital dynamics of its planets. Journal of Cosmology and Astroparticle Physics, 2010, 2010, 046-046.	5.4	35
123	Effect of sun and planet-bound dark matter on planet and satellite dynamics in the solar system. Journal of Cosmology and Astroparticle Physics, 2010, 2010, 018-018.	5.4	23
124	Phenomenological constraints on Lemaître-Tolman-Bondi cosmological inhomogeneities from solar system dynamics. Journal of Cosmology and Astroparticle Physics, 2010, 2010, 004-004.	5.4	4
125	The Perihelion Precession of Saturn, Planet X/Nemesis and MOND~!2009-09-17~!2009-10-08~!2010-05-05~!. The Open Astronomy Journal, 2010, 3, 1-6.	1.6	26
126	MOND Orbits in the Oort Cloud. The Open Astronomy Journal, 2010, 3, 156-166.	1.6	10

#	Article	IF	CITATIONS
127	Constraining the Kehagias-Sfetsos Solution of the Ho!ava-Lifshitz Modified Gravity with Extrasolar Planets. The Open Astronomy Journal, 2010, 3, 167-171.	1.6	38
128	On Possible A-Priori "Imprinting―of General Relativity Itself on the Performed Lense-Thirring Tests with LAGEOS Satellites. Communications and Network, 2010, 02, 26-30.	0.8	6
129	Orbital effects of Sun's mass loss and the Earth's fate. Natural Science, 2010, 02, 329-337.	0.4	6
130	Is it plausible to expect a close encounter of the Earth with a yet undiscovered astronomical object in the next few years?. Natural Science, 2010, 02, 1181-1188.	0.4	0
131	THE RECENTLY DETERMINED ANOMALOUS PERIHELION PRECESSION OF SATURN. Astronomical Journal, 2009, 137, 3615-3618.	4.7	60
132	WILL IT BE POSSIBLE TO MEASURE INTRINSIC GRAVITOMAGNETISM WITH LUNAR LASER RANGING?. International Journal of Modern Physics D, 2009, 18, 1319-1326.	2.1	4
133	CAN THE PIONEER ANOMALY BE INDUCED BY VELOCITY-DEPENDENT FORCES? TESTS IN THE OUTER REGIONS OF THE SOLAR SYSTEM WITH PLANETARY DYNAMICS. International Journal of Modern Physics D, 2009, 18, 947-958.	2.1	17
134	Gravitomagnetic effects in Kerr-de Sitter space-time. Journal of Cosmology and Astroparticle Physics, 2009, 2009, 024-024.	5.4	9
135	Gravitomagnetic Effect in Gravitational Waves. , 2009, , .		4
136	Galactic Sun's motion in the cold dark matter, MOdified Newtonian Dynamics and modified gravity scenarios. Astronomische Nachrichten, 2009, 330, 857-862.	1.2	7
137	On the MOND external field effect in the solar system. Astrophysics and Space Science, 2009, 323, 215-219.	1.4	12
138	Towards a 1% measurement of the Lense-Thirring effect with LARES?. Advances in Space Research, 2009, 43, 1148-1157.	2.6	12
139	Einstein Gravity Explorer–a medium-class fundamental physics mission. Experimental Astronomy, 2009, 23, 573-610.	3.7	95
140	"Galileo Galilei―(GG) a small satellite to test the equivalence principle of Galileo, Newton and Einstein. Experimental Astronomy, 2009, 23, 689-710.	3.7	22
141	Mars and frame-dragging: study for a dedicated mission. General Relativity and Gravitation, 2009, 41, 1273-1284.	2.0	7
142	Will the recently approved LARES mission be able to measure the Lense–Thirring effect at 1%?. General Relativity and Gravitation, 2009, 41, 1717-1724.	2.0	21
143	An Assessment of the Systematic Uncertainty in Present and Future Tests of the Lense-Thirring Effect withÂSatellite Laser Ranging. Space Science Reviews, 2009, 148, 363-381.	8.1	49
144	Constraints on planet X/Nemesis from Solar System's inner dynamics. Monthly Notices of the Royal Astronomical Society, 2009, 400, 346-353.	4.4	33

#	Article	IF	CITATIONS
145	Prospects for measuring the moment of inertia of pulsar J0737-3039A. New Astronomy, 2009, 14, 40-43.	1.8	14
146	Constraining the cosmological constant and the DGP gravity with the double pulsar PSR J0737-3039. New Astronomy, 2009, 14, 196-199.	1.8	18
147	The Effect of General Relativity on Hyperbolic Orbits and Its Application to the Flyby Anomaly. Scholarly Research Exchange, 2009, 2009, 1-8.	0.2	14
148	On the orbital and physical parameters ofÂtheÂHDEÂ226868/Cygnus X-1 binary system. Astrophysics and Space Science, 2008, 315, 335-340.	1.4	10
149	The impact of the oblateness of Regulus on the motion of its companion. Astrophysics and Space Science, 2008, 318, 51-55.	1.4	8
150	Determination of tidal distortion in the eclipsing binary system V621 Cen by means of deviations from the third Kepler law. New Astronomy, 2008, 13, 473-475.	1.8	0
151	Solar System Motions and the Cosmological Constant: layout cmd="newline"? A New Approach. Advances in Astronomy, 2008, 2008, 1-5.	1.1	37
152	PERSPECTIVES ON MEASURING THE PPN PARAMETERS $\hat{1}^2$ AND $\hat{1}^3$ IN EARTH'S GRAVITATIONAL FIELD TO HIGH ACCURACY WITH CHAMP/GRACE MODELS. International Journal of Modern Physics D, 2008, 17, 815-829.	2.1	4
153	An Assessment of the Systematic Uncertainty in Present and Future Tests of the Lense-Thirring Effect withÂSatellite Laser Ranging. Space Sciences Series of ISSI, 2008, , 415-433.	0.0	2
154	Advances in the Measurement of the Lense-Thirring Effect with Planetary Motions in the Field of the Sun. Scholarly Research Exchange, 2008, 2008, 1-5.	0.2	7
155	Putting Yukawa-Like Modified Gravity (MOG) on the Test in the Solar System. Scholarly Research Exchange, 2008, 2008, 1-4.	0.2	9
156	Solar System Tests of Some Models of Modified Gravity Proposed to Explain Galactic Rotation Curves without Dark Matter. Scholarly Research Exchange, 2008, 2008, 1-7.	0.2	9
157	CONSTRAINING MODELS OF MODIFIED GRAVITY WITH THE DOUBLE PULSAR PSR J0737-3039A/B SYSTEM. International Journal of Modern Physics A, 2007, 22, 5379-5389.	1.5	15
158	DOES CASSINI ALLOW ONE TO MEASURE RELATIVISTIC ORBITAL EFFECTS IN THE SATURNIAN SYSTEM OF SATELLITES?. International Journal of Modern Physics D, 2007, 16, 11-17.	2.1	3
159	Constraints on the range λ of Yukawa-like modifications to the Newtonian inverse-square law of gravitation from Solar System planetary motions. Journal of High Energy Physics, 2007, 2007, 041-041.	4.7	36
160	Solar System planetary orbital motions andf(R) theories of gravity. Journal of Cosmology and Astroparticle Physics, 2007, 2007, 010-010.	5.4	58
161	LARES/WEBER-SAT and the equivalence principle. Europhysics Letters, 2007, 80, 40007.	2.0	9
162	Testing general relativity with satellite laser ranging: Recent developments. Advances in Space Research, 2007, 39, 236-243.	2.6	0

#	Article	IF	CITATIONS
163	An assessment of the measurement of the Lenseâ \in "Thirring effect in the Earth gravity field, in reply to: â $\in \infty$ On the measurement of the Lenseâ \in "Thirring effect using the nodes of the LAGEOS satellites, in reply to â $\in \infty$ On the reliability of the so far performed tests for measuring the Lenseâ \in "Thirring effect with the LAGEOS satellitesâ \in by L. Iorio.â \in by I. Ciufolini and E. Pavlis. Planetary and Space Science, 2007, 55, 503-511.	1.7	17
164	A comment on the paper "On the orbit of the LARES satellite― by I. Ciufolini. Planetary and Space Science, 2007, 55, 1198-1200.	1.7	9
165	First preliminary tests of the general relativistic gravitomagnetic field of the Sun and new constraints on a Yukawa-like fifth force from planetary data. Planetary and Space Science, 2007, 55, 1290-1298.	1.7	36
166	The impact of the Kuiper Belt Objects and of the asteroid ring on future high-precision relativistic Solar System tests. Planetary and Space Science, 2007, 55, 2045-2048.	1.7	1
167	Dynamical determination of the mass of the Kuiper Belt from motions of the inner planets of the Solar system. Monthly Notices of the Royal Astronomical Society, 2007, 375, 1311-1314.	4.4	23
168	A model-independent test of the spatial variations of the Newtonian gravitational constant in some extrasolar planetary systems. Monthly Notices of the Royal Astronomical Society, 2007, 376, 1727-1730.	4.4	5
169	Can the Pioneer Anomaly be of Gravitational Origin? A Phenomenological Answer. Foundations of Physics, 2007, 37, 897-918.	1.3	37
170	Dynamical determination of the quadrupole mass moment of a white dwarf. Astrophysics and Space Science, 2007, 310, 73-76.	1.4	15
171	The post-Newtonian mean anomaly advance as further post-Keplerian parameter in pulsar binary systems. Astrophysics and Space Science, 2007, 312, 331-335.	1.4	20
172	Dynamical constraints on some orbital and physical properties of the WD0137-349A/B binary system. Astrophysics and Space Science, 2007, 312, 337-341.	1.4	15
173	Astronomical Constraints on Some Long-Range Models of Modified Gravity. Advances in High Energy Physics, 2007, 2007, 1-9.	1.1	20
174	The gravitomagnetic clock effect and its possible observation. Annalen Der Physik, 2006, 15, 868-876.	2.4	22
175	CAN SOLAR SYSTEM OBSERVATIONS TELL US SOMETHING ABOUT THE COSMOLOGICAL CONSTANT?. International Journal of Modern Physics D, 2006, 15, 473-475.	2.1	47
176	On the impossibility of measuring the general relativistic part of the terrestrial acceleration of gravity with superconducting gravimeters. Geophysical Journal International, 2006, 167, 567-569.	2.4	2
177	Are we far from testing general relativity with the transitting extrasolar planet HD 209458b â€~Osiris'?. New Astronomy, 2006, 11, 490-494.	1.8	44
178	What do the orbital motions of the outer planets of the Solar System tell us about the Pioneer anomaly?. New Astronomy, 2006, 11, 600-607.	1.8	49
179	On the use of Ajisai and Jason-1 satellites for tests of general relativity. New Astronomy, 2006, 12, 224-233.	1.8	3
180	The impact of the new Earth gravity model EIGEN-CG03C on the measurement of the Lense-Thirring effect with some existing Earth satellites. General Relativity and Gravitation, 2006, 38, 523-527.	2.0	6

#	Article	IF	CITATIONS
181	A Critical Analysis of a Recent Test of the Lense–Thirring Effect with the LAGEOS Satellites. Journal of Geodesy, 2006, 80, 128-136.	3.6	35
182	How is the orbital period of a test particle modified by the Dvali–Gabadadze–Porrati gravity?. Journal of Cosmology and Astroparticle Physics, 2006, 2006, 008-008.	5.4	8
183	On the prospects for testing the Dvali–Gabadadze–Porrati gravity model with the outer planets of the Solar System. Journal of Cosmology and Astroparticle Physics, 2006, 2006, 007-007.	5.4	4
184	Solar system planetary orbital motions and dark matter. Journal of Cosmology and Astroparticle Physics, 2006, 2006, 002-002.	5.4	29
185	A note on the evidence of the gravitomagnetic field of Mars. Classical and Quantum Gravity, 2006, 23, 5451-5454.	4.0	55
186	DOPPLER EFFECTS FROM BENDING OF LIGHT RAYS IN CURVED SPACE–TIMES. International Journal of Modern Physics D, 2006, 15, 1183-1198.	2.1	2
187	SPIN PRECESSION IN THE DVALI–GABADADZE–PORRATI BRANEWORLD SCENARIO. International Journal of Modern Physics D, 2006, 15, 469-472.	2.1	0
188	The Impact of the New CHAMP and GRACE Gravity Models on the Measurement of the General Relativistic Lense-Thirring Effect. , 2005, , 187-192.		3
189	On the possibility of measuring the solar oblateness and some relativistic effects from planetary ranging. Astronomy and Astrophysics, 2005, 433, 385-393.	5.1	49
190	On the reliability of the so-far performed tests for measuring the Lense–Thirring effect with the LAGEOS satellites. New Astronomy, 2005, 10, 603-615.	1.8	37
191	The impact of the new Earth gravity models on the measurement of the Lense–Thirring effect with a new satellite. New Astronomy, 2005, 10, 616-635.	1.8	36
192	On the possibility of measuring the post-Newtonian gravitoelectric correction to the orbital period of a test body in a Solar system scenario. Monthly Notices of the Royal Astronomical Society, 2005, 359, 328-332.	4.4	3
193	An Analytical Treatment of the Clock Paradox in the Framework of the Special and General Theories of Relativity. Foundations of Physics Letters, 2005, 18, 1-19.	0.6	14
194	On the impossibility of using the longitude of the ascending node of GP-B for measuring the Lense?Thirring effect. General Relativity and Gravitation, 2005, 37, 391-398.	2.0	3
195	How to reach a few percent level in determining the Lense–Thirring effect?. General Relativity and Gravitation, 2005, 37, 1059-1074.	2.0	6
196	Is it possible to measure the Lense-Thirring effect on the orbits of the planets in the gravitational field of the Sun?. Astronomy and Astrophysics, 2005, 431, 385-389.	5.1	45
197	On the clock paradox in the case of circular motion of the moving clock. European Journal of Physics, 2005, 26, 535-541.	0.6	3
198	On the possibility of measuring the gravitomagnetic clock effect in an Earth space-based experiment. Classical and Quantum Gravity, 2005, 22, 119-132.	4.0	25

#	Article	IF	CITATIONS
199	On the possibility of testing the Dvali–Gabadadze–Porrati brane-world scenario with orbital motions in the Solar System. Journal of Cosmology and Astroparticle Physics, 2005, 2005, 008-008.	5.4	16
200	Secular increase of the astronomical unit and perihelion precessions as tests of the Dvali–Gabadadze–Porrati multi-dimensional braneworld scenario. Journal of Cosmology and Astroparticle Physics, 2005, 2005, 006-006.	5.4	33
201	On the effects of Dvali–Gabadadze–Porrati braneworld gravity on the orbital motion of a test particle. Classical and Quantum Gravity, 2005, 22, 5271-5281.	4.0	35
202	THE LENSE–THIRRING EFFECT IN THE JOVIAN SYSTEM OF THE GALILEAN SATELLITES AND ITS MEASURABILITY. International Journal of Modern Physics D, 2005, 14, 2039-2049.	2.1	10
203	On the impossibility of measuring a galvano-gravitomagnetic effect with current carrying semiconductors in a space-based experiment. Classical and Quantum Gravity, 2004, 21, 2065-2069.	4.0	1
204	On the Possibility of Testing the Weak Equivalence Principle with Artificial Earth Satellites. General Relativity and Gravitation, 2004, 36, 361-372.	2.0	3
205	The Impact of the New Earth Gravity Models on the Measurement of the Lense–Thirring Effect. General Relativity and Gravitation, 2004, 36, 1321-1333.	2.0	40
206	Some Comments on a Recently Derived Approximated Solution of the Einstein Equations for a Spinning Body with Negligible Mass. General Relativity and Gravitation, 2004, 36, 1987-2003.	2.0	1
207	OPTIS—An Einstein Mission for Improved Tests of Special and General Relativity. General Relativity and Gravitation, 2004, 36, 2373-2416.	2.0	32
208	On the possibility of measuring the Lense–Thirring effect with a LAGEOS–LAGEOS II–OPTIS mission. Classical and Quantum Gravity, 2004, 21, 2139-2151.	4.0	28
209	New Perspectives in Testing the General Relativistic Lense-Thirring Effect. Springer Proceedings in Physics, 2004, , 513-520.	0.2	0
210	Title is missing!. Celestial Mechanics and Dynamical Astronomy, 2003, 86, 277-294.	1.4	51
211	Letter: A Reassessment of the Systematic Gravitational Error in the LARES Mission. General Relativity and Gravitation, 2003, 35, 1263-1272.	2.0	7
212	On a New Observable for Measuring the Lense–Thirring Effect with Satellite Laser Ranging. General Relativity and Gravitation, 2003, 35, 1583-1595.	2.0	10
213	A new proposal for measuring the Lense–Thirring effect with a pair of supplementary satellites in the gravitational field of the Earth. Physics Letters, Section A: General, Atomic and Solid State Physics, 2003, 308, 81-84.	2.1	11
214	ON SOME GRAVITOMAGNETIC SPIN–SPIN EFFECTS FOR ASTRONOMICAL BODIES. International Journal of Modern Physics D, 2003, 12, 35-43.	2.1	7
215	On the possibility of measuring the EarthÂs gravitomagnetic force in a new laboratory experiment. Classical and Quantum Gravity, 2003, 20, L5-L9.	4.0	7
216	LAGEOS-type satellites in critical supplementary orbit configuration and the Lense–Thirring effect detection. Classical and Quantum Gravity, 2003, 20, 2477-2490.	4.0	14

#	ARTICLE	IF	CITATIONS
217	A GRAVITOMAGNETIC EFFECT ON THE ORBIT OF A TEST BODY DUE TO THE EARTH'S VARIABLE ANGULAR MOMENTUM. International Journal of Modern Physics D, 2002, 11, 781-787.	2.1	10
218	THE IMPACT OF TIDAL ERRORS ON THE DETERMINATION OF THE LENSE–THIRRING EFFECT FROM SATELLITE LASER RANGING. International Journal of Modern Physics D, 2002, 11, 599-618.	2.1	26
219	An alternative derivation of the gravitomagnetic clock effect. Classical and Quantum Gravity, 2002, 19, 39-49.	4.0	29
220	Measuring the relativistic perigee advance with satellite laser ranging. Classical and Quantum Gravity, 2002, 19, 4301-4309.	4.0	32
221	Is it possible to improve the present LAGEOSÂLAGEOS II LenseÂThirring experiment?. Classical and Quantum Gravity, 2002, 19, 5473-5480.	4.0	15
222	Is it possible to test directly general relativity in the gravitational field of the Moon?. Classical and Quantum Gravity, 2002, 19, 2393-2398.	4.0	4
223	A critical approach to the concept of a polar, low-altitude LARES satellite. Classical and Quantum Gravity, 2002, 19, L175-L183.	4.0	16
224	The LARES mission revisited: an alternative scenario. Classical and Quantum Gravity, 2002, 19, 4311-4325.	4.0	37
225	Constraints on a Yukawa gravitational potential from laser data of LAGEOS satellites. Physics Letters, Section A: General, Atomic and Solid State Physics, 2002, 298, 315-318.	2.1	40
226	Earth Tides and Lense–Thirring Effect. Celestial Mechanics and Dynamical Astronomy, 2001, 79, 201-230.	1.4	43
227	On the gravitomagnetic clock effect. Physics Letters, Section A: General, Atomic and Solid State Physics, 2001, 292, 49-57.	2.1	54
228	SATELLITE GRAVITATIONAL ORBITAL PERTURBATIONS AND THE GRAVITOMAGNETIC CLOCK EFFECT. International Journal of Modern Physics D, 2001, 10, 465-476.	2.1	22
229	Satellite non-gravitational orbital perturbations and the detection of the gravitomagnetic clock effect. Classical and Quantum Gravity, 2001, 18, 4303-4310.	4.0	19
230	REDUCING THE EXPERIMENTAL UNCERTAINTY ON THE CKM ANGLE α. Modern Physics Letters A, 1999, 14, 1461-1477.	1.2	0
231	Orbital effects of a monochromatic plane gravitational wave with ultra-low frequency incident on a gravitationally bound two-body system. ScienceOpen Research, 0, , .	0.6	Ο