
Steven T Bailey

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9550485/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Quantitative Optical Coherence Tomography Angiography of Choroidal Neovascularization in Age-Related Macular Degeneration. Ophthalmology, 2014, 121, 1435-1444.	5.2	654
2	Quantitative optical coherence tomography angiography of vascular abnormalities in the living human eye. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, E2395-402.	7.1	563
3	Diabetic Retinopathy Preferred Practice Pattern®. Ophthalmology, 2020, 127, P66-P145.	5.2	341
4	OPTICAL COHERENCE TOMOGRAPHY ANGIOGRAPHY FEATURES OF DIABETIC RETINOPATHY. Retina, 2015, 35, 2371-2376.	1.7	324
5	Automated Quantification of Capillary Nonperfusion Using Optical Coherence Tomography Angiography in Diabetic Retinopathy. JAMA Ophthalmology, 2016, 134, 367.	2.5	319
6	Projection-resolved optical coherence tomographic angiography. Biomedical Optics Express, 2016, 7, 816.	2.9	285
7	Optical Coherence Tomography Angiography. , 2016, 57, OCT27.		283
8	Age-Related Macular Degeneration Preferred Practice Pattern®. Ophthalmology, 2020, 127, P1-P65.	5.2	167
9	Visualization of 3 Distinct Retinal Plexuses by Projection-Resolved Optical Coherence Tomography Angiography in Diabetic Retinopathy. JAMA Ophthalmology, 2016, 134, 1411.	2.5	164
10	DETECTION OF NONEXUDATIVE CHOROIDAL NEOVASCULARIZATION IN AGE-RELATED MACULAR DEGENERATION WITH OPTICAL COHERENCE TOMOGRAPHY ANGIOGRAPHY. Retina, 2015, 35, 2204-2211.	1.7	142
11	Advanced image processing for optical coherence tomographic angiography of macular diseases. Biomedical Optics Express, 2015, 6, 4661.	2.9	122
12	Automated choroidal neovascularization detection algorithm for optical coherence tomography angiography. Biomedical Optics Express, 2015, 6, 3564.	2.9	96
13	Reflectance-based projection-resolved optical coherence tomography angiography [Invited]. Biomedical Optics Express, 2017, 8, 1536.	2.9	76
14	Sensitivity and Specificity of OCT Angiography to Detect Choroidal Neovascularization. Ophthalmology Retina, 2017, 1, 294-303.	2.4	71
15	Plexus-specific retinal vascular anatomy and pathologies as seen by projection-resolved optical coherence tomographic angiography. Progress in Retinal and Eye Research, 2021, 80, 100878.	15.5	71
16	Time Requirements for Electronic Health Record Use in an Academic Ophthalmology Center. JAMA Ophthalmology, 2017, 135, 1250.	2.5	69
17	Artificial intelligence in OCT angiography. Progress in Retinal and Eye Research, 2021, 85, 100965.	15.5	54
18	Automated diagnosis and segmentation of choroidal neovascularization in OCT angiography using deep learning. Biomedical Optics Express, 2020, 11, 927.	2.9	51

STEVEN T BAILEY

#	Article	IF	CITATIONS
19	DETECTION OF CLINICALLY UNSUSPECTED RETINAL NEOVASCULARIZATION WITH WIDE-FIELD OPTICAL COHERENCE TOMOGRAPHY ANGIOGRAPHY. Retina, 2020, 40, 891-897.	1.7	50
20	Detection of Nonexudative Choroidal Neovascularization and Progression to Exudative Choroidal Neovascularization Using OCT Angiography. Ophthalmology Retina, 2019, 3, 629-636.	2.4	46
21	Automated registration and enhanced processing of clinical optical coherence tomography angiography. Quantitative Imaging in Medicine and Surgery, 2016, 6, 391-401.	2.0	33
22	Optical Coherence Tomographic Angiography of Choroidal Neovascularization Associated With Central Serous Chorioretinopathy. JAMA Ophthalmology, 2015, 133, 1212.	2.5	30
23	Quantitative Evaluation of Choroidal Neovascularization under Pro Re Nata Anti–Vascular Endothelial Growth Factor Therapy with OCT Angiography. Ophthalmology Retina, 2018, 2, 931-941.	2.4	27
24	Plexus-Specific Detection of Retinal Vascular Pathologic Conditions with Projection-Resolved OCT Angiography. Ophthalmology Retina, 2018, 2, 816-826.	2.4	27
25	Classification of Choroidal Neovascularization Using Projection-Resolved Optical Coherence Tomographic Angiography. , 2018, 59, 4285.		26
26	Maximum value projection produces better en face OCT angiograms than mean value projection. Biomedical Optics Express, 2018, 9, 6412.	2.9	26
27	Detection of Reduced Retinal Vessel Density in Eyes with Geographic Atrophy Secondary to Age-Related Macular Degeneration Using Projection-Resolved Optical Coherence Tomography Angiography. American Journal of Ophthalmology, 2020, 209, 206-212.	3.3	25
28	Optical coherence tomographic angiography of choroidal neovascularization ill-defined with fluorescein angiography. British Journal of Ophthalmology, 2017, 101, 45-50.	3.9	23
29	Automatic quantification of choroidal neovascularization lesion area on OCT angiography based on density cell-like P systems with active membranes. Biomedical Optics Express, 2018, 9, 3208.	2.9	23
30	Quantification of choroidal neovascularization vessel length using optical coherence tomography angiography. Journal of Biomedical Optics, 2016, 21, 076010.	2.6	21
31	Projection-resolved optical coherence tomography angiography exhibiting early flow prior to clinically observed retinal angiomatous proliferation. American Journal of Ophthalmology Case Reports, 2017, 8, 53-57.	0.7	21
32	Optical Coherence Tomography Angiography Avascular Area Association With 1-Year Treatment Requirement and Disease Progression in Diabetic Retinopathy. American Journal of Ophthalmology, 2020, 217, 268-277.	3.3	21
33	Comparison of Central Macular Fluid Volume With Central Subfield Thickness in Patients With Diabetic Macular Edema Using Optical Coherence Tomography Angiography. JAMA Ophthalmology, 2021, 139, 734-741.	2.5	17
34	A Deep Learning Network for Classifying Arteries and Veins in Montaged Widefield OCT Angiograms. Ophthalmology Science, 2022, 2, 100149.	2.5	17
35	Quantification of Nonperfusion Area in Montaged Widefield OCT Angiography Using Deep Learning in Diabetic Retinopathy. Ophthalmology Science, 2021, 1, 100027.	2.5	12
36	An Open-Source Deep Learning Network for Reconstruction of High-Resolution OCT Angiograms of Retinal Intermediate and Deep Capillary Plexuses. Translational Vision Science and Technology, 2021, 10, 13.	2.2	12

STEVEN T BAILEY

#	Article	IF	CITATIONS
37	Reticular Pseudodrusen Characteristics and Associations in the Carotenoids in Age-Related Eye Disease Study 2 (CAREDS2), an Ancillary Study of the Women's Health Initiative. Ophthalmology Retina, 2021, 5, 721-729.	2.4	10
38	Association Between Fluid Volume in Inner Nuclear Layer and Visual Acuity in Diabetic Macular Edema. American Journal of Ophthalmology, 2022, 237, 164-172.	3.3	8
39	Deep learning-based signal-independent assessment of macular avascular area on 6×6 mm optical coherence tomography angiogram in diabetic retinopathy: a comparison to instrument-embedded software. British Journal of Ophthalmology, 2023, 107, 84-89.	3.9	4
40	Injection pressure levels for creating blebs during subretinal gene therapy. Gene Therapy, 2022, 29, 601-607.	4.5	4
41	Geographic Atrophy Progression Is Associated With Choriocapillaris Flow Deficits Measured With Optical Coherence Tomographic Angiography. , 2021, 62, 28.		3
42	Plexus-specific retinal capillary avascular area in exudative age-related macular degeneration with projection-resolved OCT angiography. British Journal of Ophthalmology, 2022, 106, 719-723.	3.9	2
43	Does the Cilioretinal Artery Preserve Vision in High Myopia?. Ophthalmology Retina, 2020, 4, 963-964.	2.4	1
44	Optical coherence tomography angiography of non-exudative choroidal neovascularization. Yan Ke Xue Bao = Eye Science, 2016, 31, 243-245.	0.1	0