
Remco H Westerink

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9550054/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The PC12 cell as model for neurosecretion. Acta Physiologica, 2008, 192, 273-285.	1.8	315
2	The plastic brain: neurotoxicity of micro- and nanoplastics. Particle and Fibre Toxicology, 2020, 17, 24.	2.8	273
3	Neurotoxicity of Brominated Flame Retardants: (In)direct Effects of Parent and Hydroxylated Polybrominated Diphenyl Ethers on the (Developing) Nervous System. Environmental Health Perspectives, 2011, 119, 900-907.	2.8	265
4	Neurotoxicity of pesticides. Acta Neuropathologica, 2019, 138, 343-362.	3.9	265
5	Neurodegenerative and neurological disorders by small inhaled particles. NeuroToxicology, 2016, 56, 94-106.	1.4	246
6	Hydroxylation Increases the Neurotoxic Potential of BDE-47 to Affect Exocytosis and Calcium Homeostasis in PC12 Cells. Environmental Health Perspectives, 2008, 116, 637-643.	2.8	197
7	Recommendation on test readiness criteria for new approach methods in toxicology: Exemplified for developmental neurotoxicity. ALTEX: Alternatives To Animal Experimentation, 2018, 35, 306-352.	0.9	121
8	Neonatal Exposure to Brominated Flame Retardant BDE-47 Reduces Long-Term Potentiation and Postsynaptic Protein Levels in Mouse Hippocampus. Environmental Health Perspectives, 2007, 115, 865-870.	2.8	115
9	Human iPSC-derived neuronal models for in vitro neurotoxicity assessment. NeuroToxicology, 2018, 67, 215-225.	1.4	110
10	Reference compounds for alternative test methods to indicate developmental neurotoxicity (DNT) potential of chemicals: example lists and criteria for their selection and use. ALTEX: Alternatives To Animal Experimentation, 2017, 34, 49-74.	0.9	94
11	Translating neurobehavioural endpoints of developmental neurotoxicity tests into in vitro assays and readouts. NeuroToxicology, 2012, 33, 911-924.	1.4	84
12	Effect fingerprinting of new psychoactive substances (NPS): What can we learn from in vitro data?. , 2018, 182, 193-224.		75
13	Neurotoxicity and risk assessment of brominated and alternative flame retardants. Neurotoxicology and Teratology, 2015, 52, 248-269.	1.2	74
14	Azole Fungicides Disturb Intracellular Ca2+ in an Additive Manner in Dopaminergic PC12 Cells. Toxicological Sciences, 2013, 134, 374-381.	1.4	65
15	PCB-47, PBDE-47, and 6-OH-PBDE-47 Differentially Modulate Human GABAA and α4β2 Nicotinic Acetylcholine Receptors. Toxicological Sciences, 2010, 118, 635-642.	1.4	61
16	Multiple Novel Modes of Action Involved in the In Vitro Neurotoxic Effects of Tetrabromobisphenol-A. Toxicological Sciences, 2012, 128, 235-246.	1.4	59
17	Hallucinogen persisting perception disorder and the serotonergic system: A comprehensive review including new MDMA-related clinical cases. European Neuropsychopharmacology, 2014, 24, 1309-1323.	0.3	59
18	Bromination Pattern of Hydroxylated Metabolites of BDE-47 Affects Their Potency to Release Calcium from Intracellular Stores in PC12 Cells. Environmental Health Perspectives, 2010, 118, 519-525.	2.8	57

REMCO H WESTERINK

#	Article	IF	CITATIONS
19	Detection of marine neurotoxins in food safety testing using a multielectrode array. Molecular Nutrition and Food Research, 2014, 58, 2369-2378.	1.5	57
20	ls the time right for in vitro neurotoxicity testing using human iPSC-derived neurons?. ALTEX: Alternatives To Animal Experimentation, 2016, 33, 261-71.	0.9	57
21	Comparison of the acute inhibitory effects of Tetrodotoxin (TTX) in rat and human neuronal networks for risk assessment purposes. Toxicology Letters, 2017, 270, 12-16.	0.4	54
22	A comparison of the in vitro cyto- and neurotoxicity of brominated and halogen-free flame retardants: prioritization in search for safe(r) alternatives. Archives of Toxicology, 2014, 88, 857-869.	1.9	50
23	Heterogeneity of Catecholamine-Containing Vesicles in PC12 Cells. Biochemical and Biophysical Research Communications, 2000, 270, 625-630.	1.0	49
24	Hexabromocyclododecane Inhibits Depolarization-Induced Increase in Intracellular Calcium Levels and Neurotransmitter Release in PC12 Cells. Toxicological Sciences, 2009, 107, 490-497.	1.4	49
25	Perfluorooctane sulfonate (PFOS) and perfluorooctanoate (PFOA) acutely affect human α1β2γ2L GABAA receptor and spontaneous neuronal network function in vitro. Scientific Reports, 2020, 10, 5311.	1.6	49
26	Targeting Exocytosis: Ins and Outs of the Modulation of Quantal Dopamine Release. CNS and Neurological Disorders - Drug Targets, 2006, 5, 57-77.	0.8	48
27	Measuring inhibition of monoamine reuptake transporters by new psychoactive substances (NPS) in real-time using a high-throughput, fluorescence-based assay. Toxicology in Vitro, 2017, 45, 60-71.	1.1	48
28	Calcium-Related Processes Involved in the Inhibition of Depolarization-Evoked Calcium Increase by Hydroxylated PBDEs in PC12 Cells. Toxicological Sciences, 2010, 114, 302-309.	1.4	47
29	Organochlorine Insecticides Lindane and Dieldrin and Their Binary Mixture Disturb Calcium Homeostasis in Dopaminergic PC12 Cells. Environmental Science & Technology, 2012, 46, 1842-1848.	4.6	46
30	Persistence, Bioaccumulation, and Toxicity of Halogen-Free Flame Retardants. Reviews of Environmental Contamination and Toxicology, 2013, 222, 1-71.	0.7	42
31	Pharmacokinetics and pharmacodynamics of 3,4-methylenedioxymethamphetamine (MDMA): interindividual differences due to polymorphisms and drug–drug interactions. Critical Reviews in Toxicology, 2012, 42, 854-876.	1.9	41
32	Ca2+-independent vesicular catecholamine release in PC12 cells by nanomolar concentrations of Pb2+. Journal of Neurochemistry, 2002, 80, 861-873.	2.1	39
33	Health risk assessment of exposure to TriCresyl Phosphates (TCPs) in aircraft: A commentary. NeuroToxicology, 2014, 45, 209-215.	1.4	38
34	Neurotoxicity screening of new psychoactive substances (NPS): Effects on neuronal activity in rat cortical cultures using microelectrode arrays (MEA). NeuroToxicology, 2018, 66, 87-97.	1.4	38
35	Activation and Potentiation of Human GABAA Receptors by Non-Dioxin–Like PCBs Depends on Chlorination Pattern. Toxicological Sciences, 2010, 118, 183-190.	1.4	37
36	Neuropharmacological characterization of the new psychoactive substance methoxetamine. Neuropharmacology, 2017, 123, 1-9.	2.0	37

REMCO H WESTERINK

#	Article	IF	CITATIONS
37	Comparison of different in vitro cell models for the assessment of pesticide-induced dopaminergic neurotoxicity. Toxicology in Vitro, 2017, 45, 81-88.	1.1	37
38	Chronic 14-day exposure to insecticides or methylmercury modulates neuronal activity in primary rat cortical cultures. NeuroToxicology, 2016, 57, 194-202.	1.4	36
39	Cardiotoxicity screening of illicit drugs and new psychoactive substances (NPS) in human iPSC-derived cardiomyocytes using microelectrode array (MEA) recordings. Journal of Molecular and Cellular Cardiology, 2019, 136, 102-112.	0.9	36
40	Exocytosis: Using Amperometry to Study Presynaptic Mechanisms of Neurotoxicity. NeuroToxicology, 2004, 25, 461-470.	1.4	35
41	Don't Judge A Neuron Only by Its Cover: Neuronal Function in In Vitro Developmental Neurotoxicity Testing. Toxicological Sciences, 2013, 132, 1-7.	1.4	35
42	Modulation of cell viability, oxidative stress, calcium homeostasis, and voltage- and ligand-gated ion channels as common mechanisms of action of (mixtures of) non-dioxin-like polychlorinated biphenyls and polybrominated diphenyl ethers. Environmental Science and Pollution Research, 2014, 21, 6373-6383.	2.7	35
43	Applicability of hiPSC-Derived Neuronal Cocultures and Rodent Primary Cortical Cultures for In Vitro Seizure Liability Assessment. Toxicological Sciences, 2020, 178, 71-87.	1.4	34
44	Signaling pathways involved in Ca2+- and Pb2+-induced vesicular catecholamine release from rat PC12 cells. Brain Research, 2002, 957, 25-36.	1.1	33
45	Acute disturbance of calcium homeostasis in PC12 cells as a novel mechanism of action for (sub)micromolar concentrations of organophosphate insecticides. NeuroToxicology, 2014, 43, 110-116.	1.4	33
46	Inhibition of Voltage-Gated Calcium Channels as Common Mode of Action for (Mixtures of) Distinct Classes of Insecticides. Toxicological Sciences, 2014, 141, 103-111.	1.4	33
47	Differential alterations of synaptic plasticity in dentate gyrus and CA1 hippocampal area of Calbindin-D28K knockout mice. Brain Research, 2012, 1450, 1-10.	1.1	31
48	Multivariate toxicity profiles and QSAR modeling of non-dioxin-like PCBs – An investigation of in vitro screening data from ultra-pure congeners. Chemosphere, 2011, 85, 1423-1429.	4.2	30
49	Differential Effects of 20 Non-Dioxin-Like PCBs on Basal and Depolarization-Evoked Intracellular Calcium Levels in PC12 Cells. Toxicological Sciences, 2012, 126, 487-496.	1.4	30
50	Dual actions of lindane (γ-hexachlorocyclohexane) on calcium homeostasis and exocytosis in rat PC12 cells. Toxicology and Applied Pharmacology, 2010, 248, 12-19.	1.3	29
51	Potentiation of the Human GABAA Receptor As a Novel Mode of Action of Lower-Chlorinated Non-Dioxin-Like PCBs. Environmental Science & Technology, 2010, 44, 2864-2869.	4.6	25
52	Do we really want to REACH out to in vitro?. NeuroToxicology, 2013, 39, 169-172.	1.4	25
53	Caveats and limitations of plate reader-based high-throughput kinetic measurements of intracellular calcium levels. Toxicology and Applied Pharmacology, 2011, 255, 1-8.	1.3	24
54	The ENDpoiNTs Project: Novel Testing Strategies for Endocrine Disruptors Linked to Developmental Neurotoxicity. International Journal of Molecular Sciences, 2020, 21, 3978.	1.8	24

Remco H Westerink

#	Article	IF	CITATIONS
55	Towards animal-free neurotoxicity screening: Applicability of hiPSC-derived neuronal models for in vitro seizure liability assessment. ALTEX: Alternatives To Animal Experimentation, 2020, 37, 121-135.	0.9	24
56	In vitro neurotoxic hazard characterization of different tricresyl phosphate (TCP) isomers and mixtures. NeuroToxicology, 2017, 59, 222-230.	1.4	23
57	Effects of environmental pollutants on calcium release and uptake by rat cortical microsomes. NeuroToxicology, 2018, 69, 266-277.	1.4	23
58	Acetylcholinesterase inhibition in electric eel and human donor blood: an in vitro approach to investigate interspecies differences and human variability in toxicodynamics. Archives of Toxicology, 2020, 94, 4055-4065.	1.9	22
59	Cytokine receptor clustering in sensory neurons with an engineered cytokine fusion protein triggers unique pain resolution pathways. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	22
60	High concentrations of MDMA (â€~ecstasy') and its metabolite MDA inhibit calcium influx and depolarization-evoked vesicular dopamine release in PC12 cells. Neuropharmacology, 2011, 61, 202-208.	2.0	19
61	Inhibition of Voltage-Gated Calcium Channels After Subchronic and Repeated Exposure of PC12 Cells to Different Classes of Insecticides. Toxicological Sciences, 2015, 147, 607-617.	1.4	19
62	Changes in neuronal activity in rat primary cortical cultures induced by illicit drugs and new psychoactive substances (NPS) following prolonged exposure and washout to mimic human exposure scenarios. NeuroToxicology, 2019, 74, 28-39.	1.4	19
63	Toluene-induced, Ca2+-dependent vesicular catecholamine release in rat PC12 cells. Neuroscience Letters, 2002, 326, 81-84.	1.0	18
64	Rational design of highly potent broad-spectrum enterovirus inhibitors targeting the nonstructural protein 2C. PLoS Biology, 2020, 18, e3000904.	2.6	17
65	Modulation of human GABAA receptor function: A novel mode of action of drugs of abuse. NeuroToxicology, 2011, 32, 823-827.	1.4	16
66	Assessment of the neurotoxic potential of exposure to 50Hz extremely low frequency electromagnetic fields (ELF-EMF) in naÃ ⁻ ve and chemically stressed PC12 cells. NeuroToxicology, 2014, 44, 358-364.	1.4	16
67	Additive inhibition of human α1β2γ2 GABAA receptors by mixtures of commonly used drugs of abuse. NeuroToxicology, 2013, 35, 23-29.	1.4	15
68	Characterization of Calcium Responses and Electrical Activity in Differentiating Mouse Neural Progenitor Cells In Vitro. Toxicological Sciences, 2014, 137, 428-435.	1.4	14
69	Hazard Characterization of Synthetic Cathinones Using Viability, Monoamine Reuptake, and Neuronal Activity Assays. Frontiers in Neuroscience, 2020, 14, 9.	1.4	14
70	Vesicular Catecholamine Release from Rat PC12 Cells on Acute and Subchronic Exposure to Polychlorinated Biphenyls. Toxicology and Applied Pharmacology, 2002, 183, 153-159.	1.3	13
71	Amphetamine reduces vesicular dopamine content in dexamethasoneâ€differentiated PC12 cells only following <scp>l</scp> â€DOPA exposure. Journal of Neurochemistry, 2009, 111, 624-633.	2.1	13
72	Comparison of plate reader-based methods with fluorescence microscopy for measurements of intracellular calcium levels for the assessment of in vitro neurotoxicity. NeuroToxicology, 2014, 45, 31-37.	1.4	13

Remco H Westerink

#	Article	IF	CITATIONS
73	Novel test strategies for in vitro seizure liability assessment. Expert Opinion on Drug Metabolism and Toxicology, 2021, 17, 923-936.	1.5	13
74	Modulation of human α4β2 nicotinic acetylcholine receptors by brominated and halogen-free flame retardants as a measure for in vitro neurotoxicity. Toxicology Letters, 2012, 213, 266-274.	0.4	12
75	<i>In vitro</i> dopaminergic neurotoxicity of pesticides: a link with neurodegeneration?. Veterinary Quarterly, 2014, 34, 120-131.	3.0	12
76	Chemically-induced oxidative stress increases the vulnerability of PC12 cells to rotenone-induced toxicity. NeuroToxicology, 2014, 43, 102-109.	1.4	12
77	In vitro neurotoxic hazard characterisation of dinitrophenolic herbicides. Toxicology Letters, 2016, 252, 62-69.	0.4	12
78	<i>In Vitro</i> Developmental Neurotoxicity Following Chronic Exposure to 50 Hz Extremely Low-Frequency Electromagnetic Fields in Primary Rat Cortical Cultures. Toxicological Sciences, 2016, 149, 433-440.	1.4	12
79	Selective inhibition of human heteromeric α9α10 nicotinic acetylcholine receptors at a low agonist concentration by low concentrations of ototoxic organic solvents. Toxicology in Vitro, 2008, 22, 1568-1572.	1.1	11
80	Methamphetamine, amphetamine, MDMA (â€~ecstasy'), MDA and mCPP modulate electrical and cholinergic input in PC12 cells. NeuroToxicology, 2012, 33, 255-260.	1.4	11
81	Effects of neonatal exposure to the flame retardant tetrabromobisphenol-A, aluminum diethylphosphinate or zinc stannate on long-term potentiation and synaptic protein levels in mice. Archives of Toxicology, 2015, 89, 2345-2354.	1.9	10
82	Differential effects of psychoactive substances on human wildtype and polymorphic T356M dopamine transporters (DAT). Toxicology, 2019, 422, 69-75.	2.0	10
83	Estradiol Inhibits Depolarization-Evoked Exocytosis in PC12 Cells via N-Type Voltage-Gated Calcium Channels. Cellular and Molecular Neurobiology, 2010, 30, 1235-1242.	1.7	9
84	Structure-dependent inhibition of the human α 1 β 2 γ 2 GABA A receptor by piperazine derivatives: A novel mode of action. NeuroToxicology, 2015, 51, 1-9.	1.4	9
85	Culture of Rat Primary Cortical Cells for Microelectrode Array (MEA) Recordings to Screen for Acute and Developmental Neurotoxicity. Current Protocols, 2021, 1, e158.	1.3	9
86	Refining <i>in vitro</i> and <i>in silico</i> neurotoxicity approaches by accounting for interspecies and interindividual differences in toxicodynamics. Expert Opinion on Drug Metabolism and Toxicology, 2021, 17, 1007-1017.	1.5	7
87	Sense in Pb2+ Sensing. Toxicological Sciences, 2012, 130, 1-3.	1.4	6
88	Are high-throughput measurements of intracellular calcium using plate-readers sufficiently accurate and reliable?. Toxicology and Applied Pharmacology, 2010, 249, 247-248.	1.3	5
89	Immunoglobulinfree light chains reduce in an antigen-specific manner the rate of rise of action potentials of mouse non-nociceptive dorsal root ganglion neurons. Journal of Neuroimmunology, 2013, 264, 14-23.	1.1	5
90	Hyperthermia exacerbates the acute effects of psychoactive substances on neuronal activity measured using microelectrode arrays (MEAs) in rat primary cortical cultures in vitro. Toxicology and Applied Pharmacology, 2020, 397, 115015.	1.3	5

REMCO H WESTERINK

#	Article	IF	CITATIONS
91	Organic solvent-induced changes in membrane geometry in human SH-SY5Y neuroblastoma cells – a common narcotic effect?. NeuroToxicology, 2016, 55, 74-82.	1.4	3
92	In Vitro Techniques for Assessing Neurotoxicity Using Human iPSC-Derived Neuronal Models. Neuromethods, 2019, , 17-35.	0.2	3
93	Neurotoxicity of PBDEs: Dingemans et al. Respond. Environmental Health Perspectives, 2011, 119, .	2.8	2
94	Reply to letter to the editor. NeuroToxicology, 2015, 46, 167-168.	1.4	2
95	Introduction to special issue: Neurotoxicity of brominated flame retardants and the quest for safer alternatives. Neurotoxicology and Teratology, 2015, 52, 118.	1.2	2
96	TUBE Project: Transport-Derived Ultrafines and the Brain Effects. International Journal of Environmental Research and Public Health, 2022, 19, 311.	1.2	1
97	Reply on †Prerequisites for a reliable introduction of in vitro neurotoxicity testing within the REACH framework'. NeuroToxicology, 2014, 44, 366.	1.4	0
98	Neurotoxicity of drug of abuse. NeuroToxicology, 2020, 78, 161-162.	1.4	0
99	Estimation of the risk of local and systemic effects in infants after ingestion of low-concentrated weak acids from descaling products. Clinical Toxicology, 2021, , 1-5.	0.8	0
100	Translational neurotoxicology â^' The 17th biennial meeting of the International Neurotoxicology Association. NeuroToxicology, 2022, 90, 79-80.	1.4	0
101	Title is missing!. , 2020, 18, e3000904.		0
102	Title is missing!. , 2020, 18, e3000904.		0
103	Title is missing!. , 2020, 18, e3000904.		0
104	Title is missing!. , 2020, 18, e3000904.		0
105	Title is missing!. , 2020, 18, e3000904.		0
106	Title is missing!. , 2020, 18, e3000904.		0

Title is missing!. , 2020, 18, e3000904. 106