Peter M Kopittke

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9550047/publications.pdf

Version: 2024-02-01

199 papers 9,309 citations

43973 48 h-index 86 g-index

206 all docs

206 docs citations

206 times ranked 8939 citing authors

#	Article	IF	CITATIONS
1	Probing the nature of soil organic matter. Critical Reviews in Environmental Science and Technology, 2022, 52, 4072-4093.	6.6	35
2	Use of X-ray tomography for examining root architecture in soils. Geoderma, 2022, 405, 115405.	2.3	17
3	Calcium oxalate and calcium cycling in forest ecosystems. Trees - Structure and Function, 2022, 36, 531-536.	0.9	2
4	Methods for assessing laterally-resolved distribution, speciation and bioavailability of phosphorus in soils. Reviews in Environmental Science and Biotechnology, 2022, 21, 53-74.	3.9	13
5	Effect of 50 Years of No-Tillage, Stubble Retention, and Nitrogen Fertilization on Soil Respiration, Easily Extractable Glomalin, and Nitrogen Mineralization. Agronomy, 2022, 12, 151.	1.3	8
6	Ensuring planetary survival: the centrality of organic carbon in balancing the multifunctional nature of soils. Critical Reviews in Environmental Science and Technology, 2022, 52, 4308-4324.	6.6	52
7	Widespread Occurrence of the Highly Toxic Dimethylated Monothioarsenate (DMMTA) in Rice Globally. Environmental Science & Discourge (2022, 56, 3575-3586).	4.6	27
8	Improved agronomic biofortification of sweetcorn achieved using foliar rather than soil Zn applications. Cereal Chemistry, 2022, 99, 819-829.	1.1	1
9	Translocation of Foliar Absorbed Zn in Sunflower (Helianthus annuus) Leaves. Frontiers in Plant Science, 2022, 13, 757048.	1.7	2
10	Tandem Probe Analysis Mode for Synchrotron XFM: Doubling Throughput Capacity. Analytical Chemistry, 2022, 94, 4584-4593.	3.2	3
11	Genetic biofortification of wheat with zinc: Opportunities to fineâ€ŧune zinc uptake, transport and grain loading. Physiologia Plantarum, 2022, 174, e13612.	2.6	12
12	Combined Application of Lime and a Nitrification Inhibitor (3,4-Dimethylpyrazole Phosphate) Markedly Decreased Nitrous Oxide Emissions from an Acid Soil. Agronomy, 2022, 12, 1040.	1.3	4
13	Online Engagement during COVID-19: Comparing a Course Previously Delivered Traditionally with Emergency Online Delivery. Human Behavior and Emerging Technologies, 2022, 2022, 1-12.	2.5	2
14	Avoiding the point of no return: Maintaining infiltration to remediate saline-sodic Vertosols in high rainfall environments. Agricultural Water Management, 2022, 270, 107725.	2.4	0
15	Producing Cd-safe rice grains in moderately and seriously Cd-contaminated paddy soils. Chemosphere, 2021, 267, 128893.	4.2	25
16	Effect of long-term no-tillage and nitrogen fertilization on phosphorus distribution in bulk soil and aggregates of a Vertisol. Soil and Tillage Research, 2021, 205, 104760.	2.6	22
17	The role of soil in defining planetary boundaries and the safe operating space for humanity. Environment International, 2021, 146, 106245.	4.8	25
18	Stable isotope fractionation of cadmium in the soil-rice-human continuum. Science of the Total Environment, 2021, 761, 143262.	3.9	28

#	Article	IF	Citations
19	The impact, identification and management of dispersive soils in rainfed cropping systems. European Journal of Soil Science, 2021, 72, 1655-1674.	1.8	9
20	Seawater neutralization and gypsum amelioration of bauxite refining residue to produce a plant growth medium. Science of the Total Environment, 2021, 763, 143046.	3.9	11
21	The Voltaic Effect as a Novel Mechanism Controlling the Remobilization of Cadmium in Paddy Soils during Drainage. Environmental Science & Environmenta	4.6	59
22	Review of cropâ€specific tolerance limits to acidity, salinity, and sodicity for seventeen cereal, pulse, and oilseed crops common to rainfed subtropical cropping systems. Land Degradation and Development, 2021, 32, 2459-2480.	1.8	9
23	Non-glandular trichomes of sunflower are important in the absorption and translocation of foliar-applied Zn. Journal of Experimental Botany, 2021, 72, 5079-5092.	2.4	15
24	Long-term land use change in Australia from native forest decreases all fractions of soil organic carbon, including resistant organic carbon, for cropping but not sown pasture. Agriculture, Ecosystems and Environment, 2021, 311, 107326.	2.5	26
25	Zinc Accumulates in the Nodes of Wheat Following the Foliar Application of ⁶⁵ Zn Oxide Nano- and Microparticles. Environmental Science & Env	4.6	13
26	A study over 33Âyears shows that carbon and nitrogen stocks in a subtropical soil are increasing under native vegetation in a changing climate. Science of the Total Environment, 2021, 772, 145019.	3.9	11
27	Dynamics of Dimethylated Monothioarsenate (DMMTA) in Paddy Soils and Its Accumulation in Rice Grains. Environmental Science & Technology, 2021, 55, 8665-8674.	4.6	25
28	Long-term changes in land use influence phosphorus concentrations, speciation, and cycling within subtropical soils. Geoderma, 2021, 393, 115010.	2.3	20
29	Soil organic carbon is significantly associated with the pore geometry, microbial diversity and enzyme activity of the macro-aggregates under different land uses. Science of the Total Environment, 2021, 778, 146286.	3.9	45
30	High phosphorus fertilization changes the speciation and distribution of manganese in wheat grains grown in a calcareous soil. Science of the Total Environment, 2021, 787, 147608.	3.9	6
31	50 years of continuous no-tillage, stubble retention and nitrogen fertilization enhanced macro-aggregate formation and stabilisation in a Vertisol. Soil and Tillage Research, 2021, 214, 105163.	2.6	20
32	Interaction of different-sized ZnO nanoparticles with maize (Zea mays): Accumulation, biotransformation and phytotoxicity. Science of the Total Environment, 2021, 796, 148927.	3.9	24
33	Does the APSIM model capture soil phosphorus dynamics? A case study with Vertisols. Field Crops Research, 2021, 273, 108302.	2.3	13
34	Phosphorus speciation in the fertosphere of highly concentrated fertilizer bands. Geoderma, 2021, 403, 115208.	2.3	17
35	Methods for Visualizing Elemental Distribution in Hyperaccumulator Plants. Mineral Resource Reviews, 2021, , 197-214.	1.5	4
36	Soil organic matter is stabilized by organo-mineral associations through two key processes: The role of the carbon to nitrogen ratio. Geoderma, 2020, 357, 113974.	2.3	104

#	Article	IF	CITATIONS
37	Soil carbon and nitrogen dynamics in a Vertisol following 50†years of no-tillage, crop stubble retention and nitrogen fertilization. Geoderma, 2020, 358, 113996.	2.3	46
38	Comparison of Zn accumulation and speciation in kernels of sweetcorn and maize differing in maturity. Annals of Botany, 2020, 125, 185-193.	1.4	14
39	Biogeochemical cycling of iron oxides in the rhizosphere of plants grown on ferruginous duricrust (canga). Science of the Total Environment, 2020, 713, 136637.	3.9	16
40	Understanding the delayed expression of Al resistance in signal grass (Urochloa decumbens). Annals of Botany, 2020, 125, 841-850.	1.4	2
41	Impact of land use change and soil type on total phosphorus and its fractions in soil aggregates. Land Degradation and Development, 2020, 31, 828-841.	1.8	27
42	Assessing radiation dose limits for X-ray fluorescence microscopy analysis of plant specimens. Annals of Botany, 2020, 125, 599-610.	1.4	32
43	Wastewater Treatment Processing of Silver Nanoparticles Strongly Influences Their Effects on Soil Microbial Diversity. Environmental Science & Environ	4.6	19
44	Optimising the foliar uptake of zinc oxide nanoparticles: Do leaf surface properties and particle coating affect absorption?. Physiologia Plantarum, 2020, 170, 384-397.	2.6	31
45	Plant-Available Phosphorus in Highly Concentrated Fertilizer Bands: Effects of Soil Type, Phosphorus Form, and Coapplied Potassium. Journal of Agricultural and Food Chemistry, 2020, 68, 7571-7580.	2.4	37
46	Silver Sulfide Nanoparticles Reduce Nitrous Oxide Emissions by Inhibiting Denitrification in the Earthworm Gut. Environmental Science & Earthworm Gut. Environmental Environmen	4.6	17
47	Chemical Speciation and Distribution of Cadmium in Rice Grain and Implications for Bioavailability to Humans. Environmental Science & Echnology, 2020, 54, 12072-12080.	4.6	46
48	Application of sewage sludge containing environmentally-relevant silver sulfide nanoparticles increases emissions of nitrous oxide in saline soils. Environmental Pollution, 2020, 265, 114807.	3.7	9
49	Release of silver from nanoparticle-based filter paper and the impacts to mouse gut microbiota. Environmental Science: Nano, 2020, 7, 1554-1565.	2.2	5
50	Distribution of aluminium in hydrated leaves of tea (<i>Camellia sinensis</i>) using synchrotron- and laboratory-based X-ray fluorescence microscopy. Metallomics, 2020, 12, 1062-1069.	1.0	3
51	The within-field spatial variation in rice grain Cd concentration is determined by soil redox status and pH during grain filling. Environmental Pollution, 2020, 261, 114151.	3.7	55
52	Methods to Visualize Elements in Plants. Plant Physiology, 2020, 182, 1869-1882.	2.3	40
53	Land use affects temperature sensitivity of soil organic carbon decomposition in macroaggregates but not in bulk soils in subtropical Oxisols of Queensland, Australia. Soil and Tillage Research, 2020, 198, 104566.	2.6	6
54	Time-resolved laboratory micro-X-ray fluorescence reveals silicon distribution in relation to manganese toxicity in soybean and sunflower. Annals of Botany, 2020, 126, 331-341.	1.4	12

#	Article	IF	CITATIONS
55	Increased arsenic mobilization in the rice rhizosphere is mediated by iron-reducing bacteria. Environmental Pollution, 2020, 263, 114561.	3.7	35
56	Development of ZnO Nanoparticles as an Efficient Zn Fertilizer: Using Synchrotron-Based Techniques and Laser Ablation to Examine Elemental Distribution in Wheat Grain. Journal of Agricultural and Food Chemistry, 2020, 68, 5068-5075.	2.4	45
57	Examining a synchrotron-based approach for <i>in situ</i> analyses of Al speciation in plant roots. Journal of Synchrotron Radiation, 2020, 27, 100-109.	1.0	0
58	Salinity decreases Cd translocation by altering Cd speciation in the halophytic Cd-accumulator <i>Carpobrotus rossii</i> i>. Annals of Botany, 2019, 123, 121-132.	1.4	15
59	Soil and the intensification of agriculture for global food security. Environment International, 2019, 132, 105078.	4.8	617
60	Soil chloride content influences the response of bacterial but not fungal diversity to silver nanoparticles entering soil via wastewater treatment processing. Environmental Pollution, 2019, 255, 113274.	3.7	9
61	Investigating the foliar uptake of zinc from conventional and nano-formulations: a methodological study. Environmental Chemistry, 2019, 16, 459.	0.7	19
62	Zinc and lead encapsulated in amorphous ferric cements within hardpans in situ formed from sulfidic Cu-Pb-Zn tailings. Environmental Pollution, 2019, 252, 1106-1116.	3.7	11
63	Chemical and physical influence of sodic soils on the coleoptile length and root growth angle of wheat genotypes. Annals of Botany, 2019, 124, 1043-1052.	1.4	9
64	Microbial sulfate reduction decreases arsenic mobilization in flooded paddy soils with high potential for microbial Fe reduction. Environmental Pollution, 2019, 251, 952-960.	3.7	61
65	Engineering Crops without Genome Integration Using Nanotechnology. Trends in Plant Science, 2019, 24, 574-577.	4.3	48
66	Effects of carbon nanotubes and derivatives of graphene oxide on soil bacterial diversity. Science of the Total Environment, 2019, 682, 356-363.	3.9	21
67	Speciation and accumulation of Zn in sweetcorn kernels for genetic and agronomic biofortification programs. Planta, 2019, 250, 219-227.	1.6	15
68	Cadmium contamination in agricultural soils of China and the impact on food safety. Environmental Pollution, 2019, 249, 1038-1048.	3.7	395
69	Effects of graphene oxide and graphite on soil bacterial and fungal diversity. Science of the Total Environment, 2019, 671, 140-148.	3.9	38
70	Absorption of foliar-applied Zn in sunflower (<i>Helianthus annuus</i>): importance of the cuticle, stomata and trichomes. Annals of Botany, 2019, 123, 57-68.	1.4	81
71	Iron–Manganese (Oxyhydro)oxides, Rather than Oxidation of Sulfides, Determine Mobilization of Cd during Soil Drainage in Paddy Soil Systems. Environmental Science & Technology, 2019, 53, 2500-2508.	4.6	236
72	Effects of Pesticides on Nitrous Oxide Production in Sugarcane Cropping Soil. Proceedings (mdpi), 2019, 36, 38.	0.2	0

#	Article	IF	Citations
73	Evaluating effects of iron on manganese toxicity in soybean and sunflower using synchrotron-based X-ray fluorescence microscopy and X-ray absorption spectroscopy. Metallomics, 2019, 11, 2097-2110.	1.0	8
74	Nanomaterials as fertilizers for improving plant mineral nutrition and environmental outcomes. Environmental Science: Nano, 2019, 6, 3513-3524.	2.2	99
75	Changes in soil chemistry after the application of gypsum and sulfur and irrigation with coal seam water. Geoderma, 2019, 337, 782-791.	2.3	22
76	<i>In situ</i> analyses of inorganic nutrient distribution in sweetcorn and maize kernels using synchrotron-based X-ray fluorescence microscopy. Annals of Botany, 2019, 123, 543-556.	1.4	24
77	Minimizing experimental artefacts in synchrotron-based X-ray analyses of Fe speciation in tissues of rice plants. Journal of Synchrotron Radiation, 2019, 26, 1272-1279.	1.0	7
78	Absorption of foliar-applied Zn fertilizers by trichomes in soybean and tomato. Journal of Experimental Botany, 2018, 69, 2717-2729.	2.4	80
79	Effects of methyl jasmonate on plant growth and leaf properties. Journal of Plant Nutrition and Soil Science, 2018, 181, 409-418.	1.1	36
80	Engagement and performance in a first year natural resource science course. Journal of Computer Assisted Learning, 2018, 34, 233-242.	3.3	8
81	Selection for rapid germination and emergence may improve wheat seedling establishment in the presence of soil surface crusts. Plant and Soil, 2018, 426, 227-239.	1.8	16
82	Risk of Silver Transfer from Soil to the Food Chain Is Low after Long-Term (20 Years) Field Applications of Sewage Sludge. Environmental Science & Env	4.6	39
83	Tailoring hydroxyapatite nanoparticles to increase their efficiency as phosphorus fertilisers in soils. Geoderma, 2018, 323, 116-125.	2.3	50
84	Manganese distribution and speciation help to explain the effects of silicate and phosphate on manganese toxicity in four crop species. New Phytologist, 2018, 217, 1146-1160.	3.5	58
85	Defining appropriate methods for studying toxicities of trace metals in nutrient solutions. Ecotoxicology and Environmental Safety, 2018, 147, 872-880.	2.9	11
86	Xâ€ray elemental mapping techniques for elucidating the ecophysiology of hyperaccumulator plants. New Phytologist, 2018, 218, 432-452.	3.5	104
87	Nitrogenâ€rich microbial products provide new organoâ€mineral associations for the stabilization of soil organic matter. Global Change Biology, 2018, 24, 1762-1770.	4.2	113
88	Tools for the Discovery of Hyperaccumulator Plant Species and Understanding Their Ecophysiology. Mineral Resource Reviews, 2018, , 117-133.	1.5	21
89	Using Synchrotron-Based Approaches To Examine the Foliar Application of ZnSO ₄ and ZnO Nanoparticles for Field-Grown Winter Wheat. Journal of Agricultural and Food Chemistry, 2018, 66, 2572-2579.	2.4	109
90	Effects of long-term cultivation on phosphorus (P) in five low-input, subtropical Australian soils. Agriculture, Ecosystems and Environment, 2018, 252, 191-199.	2.5	6

#	Article	IF	CITATIONS
91	Dataset on seed details of wheat genotypes, solution treatments to measure seedling emergence force and the relation between seedling force and strain. Data in Brief, 2018, 21, 1598-1602.	0.5	O
92	Bioavailability and movement of hydroxyapatite nanoparticles (HA-NPs) applied as a phosphorus fertiliser in soils. Environmental Science: Nano, 2018, 5, 2888-2898.	2.2	55
93	Differential Gene Expression in the Model Actinomycete Streptomyces coelicolor A3(2) Supports Nitrogen Mining Dependent on the Plant Carbon to Nitrogen Ratio. Agriculture (Switzerland), 2018, 8, 192.	1.4	1
94	Management of the major chemical soil constraints affecting yields in the grain growing region of Queensland and New South Wales, Australia – a review. Soil Research, 2018, 56, 765.	0.6	23
95	Greater emergence force and hypocotyl cross sectional area may improve wheat seedling emergence in sodic conditions. Plant Science, 2018, 277, 188-195.	1.7	7
96	Absorption of foliar applied Zn is decreased in Zn deficient sunflower (Helianthus annuus) due to changes in leaf properties. Plant and Soil, 2018, 433, 309-322.	1.8	21
97	Soil Organic Carbon Stabilization: Mapping Carbon Speciation from Intact Microaggregates. Environmental Science & Environmental Science & Environmenta	4.6	50
98	Time-resolved X-ray fluorescence analysis of element distribution and concentration in living plants: An example using manganese toxicity in cowpea leaves. Environmental and Experimental Botany, 2018, 156, 151-160.	2.0	17
99	Engineered silver nanoparticles in terrestrial environments: a meta-analysis shows that the overall environmental risk is small. Environmental Science: Nano, 2018, 5, 2531-2544.	2.2	25
100	Foliar application of zinc sulphate and zinc EDTA to wheat leaves: differences in mobility, distribution, and speciation. Journal of Experimental Botany, 2018, 69, 4469-4481.	2.4	95
101	Cadmium reduces zinc uptake but enhances its translocation in the cadmium-accumulator, Carpobrotus rossii, without affecting speciation. Plant and Soil, 2018, 430, 219-231.	1.8	18
102	An empirical model for prediction of wheat yield, using time-integrated Landsat NDVI. International Journal of Applied Earth Observation and Geoinformation, 2018, 72, 99-108.	1.4	52
103	Quantifying the economic impact of soil constraints on Australian agriculture: A caseâ€study of wheat. Land Degradation and Development, 2018, 29, 3866-3875.	1.8	44
104	Synchrotron-Based X-Ray Fluorescence Microscopy as a Technique for Imaging of Elements in Plants. Plant Physiology, 2018, 178, 507-523.	2.3	134
105	Synchrotronâ€based Xâ€Ray Approaches for Examining Toxic Trace Metal(loid)s in Soil–Plant Systems. Journal of Environmental Quality, 2017, 46, 1175-1189.	1.0	46
106	Microbial energy and matter transformation in agricultural soils. Soil Biology and Biochemistry, 2017, 111, 176-192.	4.2	61
107	The effect of salinity on plant-available water. Plant and Soil, 2017, 418, 477-491.	1.8	83
108	Characterizing the uptake, accumulation and toxicity of silver sulfide nanoparticles in plants. Environmental Science: Nano, 2017, 4, 448-460.	2.2	85

#	Article	IF	CITATIONS
109	Kinetics of metal toxicity in plant roots and its effects on root morphology. Plant and Soil, 2017, 419, 269-279.	1.8	6
110	Evaluation of pyritic mine tailings as a plant growth substrate. Journal of Environmental Management, 2017, 201, 207-214.	3.8	5
111	Effects of changes in leaf properties mediated by methyl jasmonate (MeJA) on foliar absorption of Zn, Mn and Fe. Annals of Botany, 2017, 120, 405-415.	1.4	36
112	Changes in exchangeable cations and micronutrients in soils and grains of long-term, low input cropping systems of subtropical Australia. Geoderma, 2017, 285, 293-300.	2.3	17
113	Global changes in soil stocks of carbon, nitrogen, phosphorus, and sulphur as influenced by longâ€ŧerm agricultural production. Global Change Biology, 2017, 23, 2509-2519.	4.2	103
114	Aluminum Complexation with Malate within the Root Apoplast Differs between Aluminum Resistant and Sensitive Wheat Lines. Frontiers in Plant Science, 2017, 8, 1377.	1.7	26
115	Alleviation of Al Toxicity by Si Is Associated with the Formation of Al–Si Complexes in Root Tissues of Sorghum. Frontiers in Plant Science, 2017, 8, 2189.	1.7	54
116	Metal uptake and organic acid exudation of native Acacia species in mine tailings. Australian Journal of Botany, 2017, 65, 357.	0.3	15
117	Characterizing the uptake, accumulation and toxicity of silver sulfide nanoparticles in plants. Environmental Science: Nano, 2017, 4, 448-460.	2.2	22
118	Silver Nanoparticles Entering Soils via the Wastewater–Sludge–Soil Pathway Pose Low Risk to Plants but Elevated Cl Concentrations Increase Ag Bioavailability. Environmental Science & Eamp; Technology, 2016, 50, 8274-8281.	4.6	92
119	Comment on "Graphene oxide regulates the bacterial community and exhibits property changes in soil― by J. Du, X. Hu and Q. Zhou, RSC Advances, 2015, 5 , 27009. RSC Advances, 2016, 6, 51203-51204.	1.7	2
120	Overhead-irrigation with saline and alkaline water: Deleterious effects on foliage of Rhodes grass and leucaena. Agricultural Water Management, 2016, 169, 173-182.	2.4	3
121	Nanotechnology: A New Opportunity in Plant Sciences. Trends in Plant Science, 2016, 21, 699-712.	4.3	690
122	Ferric minerals and organic matter change arsenic speciation in copper mine tailings. Environmental Pollution, 2016, 218, 835-843.	3.7	25
123	Cadmium accumulation is enhanced by ammonium compared to nitrate in two hyperaccumulators, without affecting speciation. Journal of Experimental Botany, 2016, 67, 5041-5050.	2.4	78
124	Role of phytohormones in aluminium rhizotoxicity. Plant, Cell and Environment, 2016, 39, 2319-2328.	2.8	41
125	In vivo formation of natural HgSe nanoparticles in the liver and brain of pilot whales. Scientific Reports, 2016, 6, 34361.	1.6	82
126	Biochar affects carbon composition and stability in soil: a combined spectroscopy-microscopy study. Scientific Reports, 2016, 6, 25127.	1.6	80

#	Article	IF	Citations
127	Kinetics and nature of aluminium rhizotoxic effects: a review. Journal of Experimental Botany, 2016, 67, 4451-4467.	2.4	65
128	Theoretical and experimental assessment of nutrient solution composition in short-term studies of aluminium rhizotoxicity. Plant and Soil, 2016, 406, 311-326.	1.8	45
129	Sulfur dynamics in sub-tropical soils of Australia as influenced by long-term cultivation. Plant and Soil, 2016, 402, 211-219.	1.8	17
130	Germination of leucaena and Rhodes grass seeds in saline and alkaline conditions. Seed Science and Technology, 2016, 44, 461-474.	0.6	3
131	Synchrotron-based Techniques Shed Light on Mechanisms of Plant Sensitivity and Tolerance to High Manganese in the Root Environment. Plant Physiology, 2015, 169, pp.00726.2015.	2.3	61
132	In situ analysis of foliar zinc absorption and short-distance movement in fresh and hydrated leaves of tomato and citrus using synchrotron-based X-ray fluorescence microscopy. Annals of Botany, 2015, 115, 41-53.	1.4	34
133	Identification of the Primary Lesion of Toxic Aluminum in Plant Roots Â. Plant Physiology, 2015, 167, 1402-1411.	2.3	194
134	Silver sulfide nanoparticles (Ag ₂ S-NPs) are taken up by plants and are phytotoxic. Nanotoxicology, 2015, 9, 1041-1049.	1.6	96
135	Use of Fluoride-Containing Water for the Irrigation of Soil–Plant Systems. Journal of Agricultural and Food Chemistry, 2015, 63, 4737-4745.	2.4	7
136	Synchrotron-based X-ray absorption near-edge spectroscopy imaging for laterally resolved speciation of selenium in fresh roots and leaves of wheat and rice. Journal of Experimental Botany, 2015, 66, 4795-4806.	2.4	41
137	The rhizotoxicity of metal cations is related to their strength of binding to hard ligands. Environmental Toxicology and Chemistry, 2014, 33, 268-277.	2.2	27
138	Kinetics and mechanisms of cowpea root adaptation to changes in solution calcium. Plant and Soil, 2014, 379, 301-314.	1.8	3
139	A web-accessible computer program for calculating electrical potentials and ion activities at cell-membrane surfaces. Plant and Soil, 2014, 375, 35-46.	1.8	30
140	Laterally resolved speciation of arsenic in roots of wheat and rice using fluorescenceâ€∢scp>XANES⟨/scp> imaging. New Phytologist, 2014, 201, 1251-1262.	3.5	81
141	Fate of ZnO Nanoparticles in Soils and Cowpea (Vigna unguiculata). Environmental Science & Emp; Technology, 2013, 47, 13822-13830.	4.6	271
142	Distribution and speciation of Mn in hydrated roots of cowpea at levels inhibiting root growth. Physiologia Plantarum, 2013, 147, 453-464.	2.6	21
143	An electrostatic model predicting Cu and Ni toxicity to microbial processes in soils. Soil Biology and Biochemistry, 2013, 57, 720-730.	4.2	21
144	Quantitative determination of metal and metalloid spatial distribution in hydrated and fresh roots of cowpea using synchrotron-based X-ray fluorescence microscopy. Science of the Total Environment, 2013, 463-464, 131-139.	3.9	38

#	Article	IF	Citations
145	In Situ Speciation and Distribution of Toxic Selenium in Hydrated Roots of Cowpea. Plant Physiology, 2013, 163, 407-418.	2.3	18
146	Mapping Element Distributions in Plant Tissues Using Synchrotron X-ray Fluorescence Techniques. Methods in Molecular Biology, 2013, 953, 143-159.	0.4	10
147	Development of an electrostatic model predicting copper toxicity to plants. Journal of Experimental Botany, 2012, 63, 659-668.	2.4	29
148	Examination of the Distribution of Arsenic in Hydrated and Fresh Cowpea Roots Using Two- and Three-Dimensional Techniques Â. Plant Physiology, 2012, 159, 1149-1158.	2.3	43
149	Identifying the species of copper that are toxic to plant roots in alkaline nutrient solutions. Plant and Soil, 2012, 361, 317-327.	1.8	14
150	Interactions between Ca, Mg, Na and K: alleviation of toxicity in saline solutions. Plant and Soil, 2012, 352, 353-362.	1.8	39
151	Alleviation of Cu and Pb Rhizotoxicities in Cowpea (<i>Vigna unguiculata</i>) as Related to Ion Activities at Root-Cell Plasma Membrane Surface. Environmental Science & Envir	4.6	57
152	Separating multiple, shortâ€term, deleterious effects of saline solutions on the growth of cowpea seedlings. New Phytologist, 2011, 189, 1110-1121.	3.5	28
153	Evaluation of an electrostatic toxicity model for predicting Ni2+ toxicity to barley root elongation in hydroponic cultures and in soils. New Phytologist, 2011, 192, 414-427.	3.5	23
154	The standard electrode potential ($E\hat{l}$) predicts the prooxidant activity and the acute toxicity of metal ions. Journal of Inorganic Biochemistry, 2011, 105, 1438-1445.	1.5	19
155	Recovery of cowpea seedling roots from exposure to toxic concentrations of trace metals. Plant and Soil, 2011, 341, 423-436.	1.8	12
156	Interaction between Cu toxicity and P deficiency in soil-grown cowpea (Vigna unguiculata (L.) Walp.). Plant and Soil, 2011, 342, 359-367.	1.8	8
157	Toxicity of metals to roots of cowpea in relation to their binding strength. Environmental Toxicology and Chemistry, 2011, 30, 1827-1833.	2.2	32
158	In Situ Distribution and Speciation of Toxic Copper, Nickel, and Zinc in Hydrated Roots of Cowpea \hat{A} \hat{A} . Plant Physiology, 2011, 156, 663-673.	2.3	130
159	Plasma Membrane Surface Potential: Dual Effects upon Ion Uptake and Toxicity. Plant Physiology, 2011, 155, 808-820.	2.3	85
160	Calculated activity of Mn2+ at the outer surface of the root cell plasma membrane governs Mn nutrition of cowpea seedlings. Journal of Experimental Botany, 2011, 62, 3993-4001.	2.4	24
161	Fast X-Ray Fluorescence Microtomography of Hydrated Biological Samples. PLoS ONE, 2011, 6, e20626.	1.1	89
162	Tolerance of seven perennial grasses to high nickel in sand culture. Environmental Chemistry, 2010, 7, 279.	0.7	5

#	Article	IF	CITATIONS
163	Toxicity of Cd to signal grass (Brachiaria decumbens Stapf.) and Rhodes grass (Chloris gayana Kunth.). Plant and Soil, 2010, 330, 515-523.	1.8	27
164	Comparative hydrolysis and sorption of Al and La onto plant cell wall material and pectic materials. Plant and Soil, 2010, 332, 319-330.	1.8	9
165	Rhizotoxic effects of silver in cowpea seedlings. Environmental Toxicology and Chemistry, 2010, 29, 2072-2078.	2,2	15
166	Metal ion effects on hydraulic conductivity of bacterial cellulose–pectin composites used as plant cell wall analogs. Physiologia Plantarum, 2010, 138, 205-214.	2.6	22
167	Trace metal phytotoxicity in solution culture: a review. Journal of Experimental Botany, 2010, 61, 945-954.	2.4	166
168	Hydrolysis and Speciation of Al Bound to Pectin and Plant Cell Wall Material and Its Reaction with the Dye Chrome Azurol S. Journal of Agricultural and Food Chemistry, 2010, 58, 5553-5560.	2.4	19
169	Influence of texture in bauxite residues on void ratio, water holding characteristics, and penetration resistance. Geoderma, 2010, 158, 421-426.	2.3	22
170	Principles of plant-based remediation of contaminated soils, 2010, , 446-469.		3
171	Toxic effects of Cu2+ on growth, nutrition, root morphology, and distribution of Cu in roots of Sabi grass. Science of the Total Environment, 2009, 407, 4616-4621.	3.9	52
172	Metal-induced cell rupture in elongating roots is associated with metal ion binding strengths. Plant and Soil, 2009, 322, 303-315.	1.8	51
173	Characterization of Lead Precipitate Following Uptake by Roots of <i>Brassica juncea</i> Environmental Toxicology and Chemistry, 2009, 28, 2250-2254.	2.2	22
174	Measurement and Interpretation of Salinity Tolerance in Four Perennial Grasses. Journal of Plant Nutrition, 2009, 32, 30-43.	0.9	7
175	Amelioration of Cadmium Contaminated Soils Using Cation Exchangers. Journal of Plant Nutrition, 2009, 32, 1321-1335.	0.9	1
176	Fresh Water Leaching of Alkaline Bauxite Residue after Sea Water Neutralization. Journal of Environmental Quality, 2009, 38, 2050-2057.	1.0	31
177	Tolerance of perennial grasses to high copper in sand culture. Environmental Chemistry, 2009, 6, 253.	0.7	1
178	Toxicities of soluble Al, Cu, and La include ruptures to rhizodermal and root cortical cells of cowpea. Plant and Soil, 2008, 303, 217-227.	1.8	109
179	Prediction of Pb speciation in concentrated and dilute nutrient solutions. Environmental Pollution, 2008, 153, 548-554.	3.7	69
180	Localization and Chemical Speciation of Pb in Roots of Signal Grass (<i>Brachiaria decumbens</i>) and Rhodes Grass (<i>Chloris gayana</i>). Environmental Science & Environmen	4.6	63

#	Article	IF	CITATIONS
181	Influence of Soil Moisture Content on Soil Solution Composition. Soil Science Society of America Journal, 2008, 72, 355-361.	1.2	24
182	Tolerance of two perennial grasses to toxic levels of Ni2+. Environmental Chemistry, 2008, 5, 426.	0.7	7
183	A Review of the Use of the Basic Cation Saturation Ratio and the "ldeal―Soil. Soil Science Society of America Journal, 2007, 71, 259-265.	1.2	105
184	Growth of Eucalyptus species in a Brown Kandosol, and changes in soil phosphorus fractionation following fertilisation. Soil Research, 2007, 45, 190.	0.6	9
185	Toxic effects of low concentrations of Cu on nodulation of cowpea (Vigna unguiculata). Environmental Pollution, 2007, 145, 309-315.	3.7	47
186	Evaluation of extractants for estimation of the phytoavailable trace metals in soils. Environmental Pollution, 2007, 145, 121-130.	3.7	364
187	Toxic effects of Pb2+ on growth of cowpea (Vigna unguiculata). Environmental Pollution, 2007, 150, 280-287.	3.7	147
188	Toxic effects of Ni2+ on growth of cowpea (Vigna unguiculata). Plant and Soil, 2007, 292, 283-289.	1.8	48
189	Toxic effects of Pb2+ on the growth and mineral nutrition of signal grass (Brachiaria decumbens) and Rhodes grass (Chloris gayana). Plant and Soil, 2007, 300, 127-136.	1.8	47
190	Growth Response of Various Perennial Grasses to Increasing Salinity. Journal of Plant Nutrition, 2006, 29, 1573-1584.	0.9	22
191	Effect of ionic strength and clay mineralogy on Na-Ca exchange and the SAR-ESP relationship. European Journal of Soil Science, 2006, 57, 626-633.	1.8	44
192	Effect of Cu Toxicity on Growth of Cowpea (Vigna unguiculata). Plant and Soil, 2006, 279, 287-296.	1.8	122
193	Examination into the Accuracy of Exchangeable Cation Measurement in Saline Soils. Communications in Soil Science and Plant Analysis, 2006, 37, 1819-1832.	0.6	14
194	Effect of pH on Na induced Ca deficiency. Plant and Soil, 2005, 269, 119-129.	1.8	28
195	Mg induced Ca deficiency under alkaline conditions. Plant and Soil, 2005, 269, 245-250.	1.8	10
196	Rhizotoxicity of aluminate and polycationic aluminium at high pH. Plant and Soil, 2005, 266, 177-186.	1.8	19
197	Control of nutrient solutions for studies at high pH. Plant and Soil, 2005, 266, 343-354.	1.8	14
198	Effect of Mn deficiency and legume inoculation on rhizosphere pH in highly alkaline soils. Plant and Soil, 2004, 262, 13-21.	1.8	16

 #	Article	IF	CITATIONS
199	Gypsum solubility in seawater, and its application to bauxite residue amelioration. Soil Research, 2004, 42, 953.	0.6	25