vysotskyieeeorg Vysotsky

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9549822/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The Feasibility Design Study and Cold Test of the First Model of HTS Cable With the Longitudinal Magnetic Field Effect. IEEE Transactions on Applied Superconductivity, 2022, 32, 1-5.	1.1	4
2	Superconducting System With 100 kW Output Power for Experimental Research. IEEE Transactions on Applied Superconductivity, 2022, 32, 1-4.	1.1	3
3	Possible Designs of Mobile Cryomagnets for Novel Microwave Technologies. IEEE Transactions on Applied Superconductivity, 2022, 32, 1-5.	1.1	0
4	HTS generator, cable and rectifier as a system for hybrid propulsion system. Journal of Physics: Conference Series, 2021, 1891, 012004.	0.3	1
5	Optimization and Cold Test of a Triaxial 2G HTS Power Cable With High Current Capacity. IEEE Transactions on Applied Superconductivity, 2021, 31, 1-4.	1.1	9
6	EXPERIMENTAL STUDY OF SUPERCONDUCTING TRANSPORT LINES COOLING PROCESSES., 2021, 13, 196-205.		0
7	THE INFLUENCE OF THE INTRINSIC MAGNETIC FIELD ON THE CURRENT-CARRYING CAPACITY OF MULTI-LAYER DC HIGH-TEMPERATURE SUPERCONDUCTING CABLES. Kabeli I Provoda, 2021, , 3-7.	0.0	0
8	Advanced Variants of HTSC Wires for ТRТ Electromagnetic System. Plasma Physics Reports, 2021, 47, 1204-1219.	0.3	5
9	Manufacturing and Testing of AC HTS-2 Coil for Small Electrical Motor. Journal of Superconductivity and Novel Magnetism, 2020, 33, 355-359.	0.8	17
10	Compact 2G HTS power cable: new cold tests results. Journal of Physics: Conference Series, 2020, 1559, 012081.	0.3	8
11	The General Appearance of the Superconducting Magnet System for the Gas-Dynamic Multimirror Trap. IEEE Transactions on Applied Superconductivity, 2020, 30, 1-4.	1.1	0
12	Heat processes in cable inputs of superconducting lines. , 2020, 12, 163-174.		0
13	Influence of Cabling on Current Characteristics of Round MgB ₂ Wires With Different Design. IEEE Transactions on Applied Superconductivity, 2019, 29, 1-5.	1.1	3
14	Investigation of HTS Power Transmission Lines Stability Conditions in Short-Circuit Mode. IEEE Transactions on Applied Superconductivity, 2019, 29, 1-5.	1.1	6
15	Cold test and numerical analysis of the compact 2G HTS power cable. IOP Conference Series: Materials Science and Engineering, 2019, 502, 012179.	0.3	3
16	Analysis of behaviour of HTS tapes cooled by liquid nitrogen under currents more than the critical current. IOP Conference Series: Materials Science and Engineering, 2019, 502, 012178.	0.3	3
17	Numerical Simulation and Cold Test of a Compact 2G HTS Power Cable. IEEE Transactions on Applied Superconductivity, 2018, , 1-1.	1.1	14
18	Further Developments of Fusion-Enabling System in Russia: Suggestions on Superconductors and Current Leads for DEMO-ENS Reactor, IEEE Transactions on Applied Superconductivity, 2018, 28, 1-5	1.1	2

1.6

12

#	Article	IF	CITATIONS
19	Optimization of 2G HTS Current Leads Working at External Magnetic Field. IEEE Transactions on Applied Superconductivity, 2018, 28, 1-5.	1.1	1
20	Influence of Cabling on Current Carrying Capabilities of MgB ₂ Superconductors. IEEE Transactions on Applied Superconductivity, 2018, 28, 1-5.	1.1	5
21	Study of the First Russian Triaxial HTS Cable Prototypes. IEEE Transactions on Applied Superconductivity, 2017, 27, 1-5.	1.1	26
22	Study of Heat Localization in HTS Wires at Overload Conditions. IEEE Transactions on Applied Superconductivity, 2017, 27, 1-5.	1.1	2
23	Development and Test Results of HTS Windings for Superconducting Transformer With 1 MVA Rated Power. IEEE Transactions on Applied Superconductivity, 2017, 27, 1-5.	1.1	12
24	Hydrogen Cooled MgB2 Cables. Asian Journal of Social Science Studies, 2016, , 593-609.	0.0	0
25	Development and Characterization of a 2G HTS Roebel Cable for Aircraft Power Systems. IEEE Transactions on Applied Superconductivity, 2016, 26, 1-4.	1.1	19
26	Thermal Stability of Bi-2223 Wires. Asian Journal of Social Science Studies, 2016, , 105-122.	0.0	1
27	Research and Development of Bi-2223-Based AC Power Cables in Russia. Asian Journal of Social Science Studies, 2016, , 289-300.	0.0	0
28	First 1 MVA and 10/0.4 kV HTSC transformer in Russia. Thermal Engineering (English Translation of) Tj ETQq0 0	0 rgBT /Ov 0.4	erlgck 10 Tf 5
29	Review of Scientific Results Obtained During Production of ITER TF and PF Conductors in Russia. IEEE Transactions on Applied Superconductivity, 2016, 26, 1-7.	1.1	4
30	Russia's Contribution to the ITER TF Magnets. IEEE Transactions on Applied Superconductivity, 2016, 26, 1-5.	1.1	5
31	Possible Reasons of Lorentz Force Direction Influence on Anisotropy of 2G HTS Tapes Critical Currents. IEEE Transactions on Applied Superconductivity, 2016, 26, 1-4.	1.1	2
32	Hysteresis Losses Analysis in 2G HTS Cables. IEEE Transactions on Applied Superconductivity, 2016, 26, 1-5.	1.1	9
33	New 30-m Flexible Hybrid Energy Transfer Line With Liquid Hydrogen and Superconducting <inline-formula> <tex-math notation="TeX">\$hbox{MgB}_{2}\$</tex-math </inline-formula> Cable—Development and Test Results. IEEE Transactions on Applied Superconductivity, 2015,	1.1	27
34	25, 1-5. Energy Transfer with Hydrogen and Superconductivity – The Review of the First Experimental Results. Physics Procedia, 2015, 65, 299-302.	1.2	3
35	Cryogenic Tests of 30 m Flexible Hybrid Energy Transfer Line with Liquid Hydrogen and Superconducting MgB2 Cable. Physics Procedia, 2015, 67, 189-194.	1.2	7

Progress with the ITER project activity in Russia. Nuclear Fusion, 2015, 55, 104007.

#	Article	IF	CITATIONS
37	Residual Resistances Ratio in NbTi Strands Extracted From the ITER PF1/6 Conductor Sample After SULTAN Tests. IEEE Transactions on Applied Superconductivity, 2015, 25, 1-3.	1.1	3
38	Heat Transfer Simulation to Liquid Nitrogen from HTS Tapes at the Overload Currents. Physics Procedia, 2015, 67, 619-624.	1.2	7
39	Current Density Distribution in 2G HTS Tape in an External Magnetic Field. Physics Procedia, 2015, 67, 931-938.	1.2	2
40	Analysis of Nb3Sn Strand Microstructure After Full-size SULTAN Test of ITER TF Conductor Sample. Physics Procedia, 2015, 67, 914-919.	1.2	9
41	Investigation of ITER TF Conductor Hydraulic Resistance. IEEE Transactions on Applied Superconductivity, 2015, 25, 1-4.	1.1	1
42	Cryogenic design and test results of 30-m flexible hybrid energy transfer line with liquid hydrogen and superconducting MgB2 cable. Cryogenics, 2015, 66, 34-42.	0.9	23
43	From Russia to Japan with Love. TEION KOGAKU (Journal of Cryogenics and Superconductivity Society) Tj ETQq1	1 0.78431 0.1	4 rgBT /Ovei
44	Test Results of RF ITER TF Conductors in the SULTAN Test Facility. IEEE Transactions on Applied Superconductivity, 2014, 24, 1-5.	1.1	15
45	First Model Power Cables Made of Russian 2G HTS Wires and their Test Results. Journal of Physics: Conference Series, 2014, 507, 032063.	0.3	6
46	Residual Resistance Ratio in <formula formulatype="inline"><tex Notation="TeX">\$hbox{Nb}_{3}hbox{Sn}\$ </tex </formula> Strands During ITER TF Conductor Manufacture and After SULTAN Tests. IEEE Transactions on Applied Superconductivity, 2014, 24, 1-5.	1.1	5
47	Development and production of second generation high <i>T</i> _c superconducting tapes at SuperOx and first tests of model cables. Superconductor Science and Technology, 2014, 27, 044022.	1.8	85
48	VNIIKP RF TF Cable Untwisting and Elongation Under Tensile Force. IEEE Transactions on Applied Superconductivity, 2014, 24, 1-4.	1.1	8
49	Analysis of critical current reduction in self-field in stacked twisted 2G HTS tapes. Journal of Physics: Conference Series, 2014, 507, 022001.	0.3	14
50	Hybrid Energy Transfer Line With Liquid Hydrogen and Superconducting \$hbox{MgB}_{2}\$ Cable—First Experimental Proof of Concept. IEEE Transactions on Applied Superconductivity, 2013, 23, 5400906-5400906.	1.1	48
51	Testing of RF 100 m TF Qualification Conductor in the SULTAN Test Facility. IEEE Transactions on Applied Superconductivity, 2013, 23, 9500805-9500805.	1.1	8
52	Status and Achievements in Production of ITER TF Conductors and PF Cables in Russian Cable Institute. IEEE Transactions on Applied Superconductivity, 2012, 22, 4200505-4200505.	1.1	15
53	Overload and High Voltage Tests of Witness Samples of 200m HTS Power Cable. Physics Procedia, 2012, 36, 1127-1130.	1.2	2
54	Losses in Power Cables Made of 2G HTS Wires with Different Substrates. Physics Procedia, 2012, 36, 1319-1323.	1.2	6

#	Article	IF	CITATIONS
55	Test and Analysis of Spliced DI-BSCCO HTS Tapes. Physics Procedia, 2012, 36, 1605-1608.	1.2	0
56	First Russian long length HTS power cable. Physica C: Superconductivity and Its Applications, 2012, 482, 87-91.	0.6	19
57	1-G HTS Split Coil Magnet for Research Purposes. IEEE Transactions on Applied Superconductivity, 2012, 22, 3900404-3900404.	1.1	2
58	Experimental hybrid power transmission line with liquid hydrogen and MgB2-based superconducting cable. Technical Physics Letters, 2012, 38, 279-282.	0.2	27
59	Hysteresis Loss in Power Cables Made of 2G HTS Wires With NiW Alloy Substrate. IEEE Transactions on Applied Superconductivity, 2011, 21, 988-990.	1.1	12
60	AC Loss and Other Researches with 5 m HTS Model Cables. IEEE Transactions on Applied Superconductivity, 2011, 21, 1001-1004.	1.1	31
61	HTS Tapes Cooled by Liquid Nitrogen at Current Overloads. IEEE Transactions on Applied Superconductivity, 2011, 21, 1323-1327.	1.1	26
62	AC loss of a model 5m 2G HTS power cable using wires with NiW substrates. Journal of Physics: Conference Series, 2010, 234, 032061.	0.3	10
63	Voltage-current characteristics of two soldered 2G HTS tapes. Journal of Physics: Conference Series, 2010, 234, 022042.	0.3	1
64	CRYOGENIC AND ELECTRICAL TEST RESULTS OF 30 M HTS POWER CABLE. , 2010, , .		5
65	30 m HTS Power Cable Development and Witness Sample Test. IEEE Transactions on Applied Superconductivity, 2009, 19, 1702-1705.	1.1	33
66	Test of HTS Tapes Cooled by Liquid Nitrogen at Overloading Conditions. IEEE Transactions on Applied Superconductivity, 2009, 19, 2411-2414.	1.1	10
67	The AC Loss Analysis in the 5 m HTS Power Cables. IEEE Transactions on Applied Superconductivity, 2009, 19, 1706-1709.	1.1	22
68	The Study of Mechanical Properties of HTS Tapes for Power Cables Use. IEEE Transactions on Applied Superconductivity, 2009, 19, 1770-1773.	1.1	5
69	1G versus 2G-comparison from the practical standpoint for HTS power cables use. Journal of Physics: Conference Series, 2008, 97, 012058.	0.3	8
70	Peculiarities on voltage - current characteristics of HTS tapes at overloading conditions cooled by liquid nitrogen. Journal of Physics: Conference Series, 2008, 97, 012015.	0.3	4
71	The 5 m HTS Power Cable Development and Test. IEEE Transactions on Applied Superconductivity, 2007, 17, 1684-1687.	1.1	13
72	The Effect of Sectioning on Superconducting Fault Current Limiter Operation. IEEE Transactions on Applied Superconductivity, 2007, 17, 1799-1802.	1.1	5

#	Article	IF	CITATIONS
73	Development and Test of a Miniature Novel Cable-In-Conduit-Conductor for Use in Fast Ramping Accelerators With Superconducting Magnets. IEEE Transactions on Applied Superconductivity, 2006, 16, 1176-1179.	1.1	8
74	Heating Development Analysis in Long HTS Objects - Updated Results. Journal of Physics: Conference Series, 2006, 43, 877-880.	0.3	5
75	Study of HTS Conductors Made From Combinations of HTS Tapes. Journal of Physics: Conference Series, 2006, 43, 1059-1062.	0.3	2
76	Analysis of stability and quench in HTS devices—New approaches. Fusion Engineering and Design, 2006, 81, 2417-2424.	1.0	8
77	Heating Development Analysis in Long HTS Objects With Cooling. IEEE Transactions on Applied Superconductivity, 2005, 15, 1655-1658.	1.1	9
78	Influences of voltage–current characteristic difference on quench development in low-Tc and high-Tc superconducting devices (Review). Physica C: Superconductivity and Its Applications, 2004, 401, 57-65.	0.6	20
79	Current distribution and voltage–current relation in multi-layered LTS and HTS power cable core: a review. Physica C: Superconductivity and Its Applications, 2004, 401, 47-56.	0.6	8
80	Correlation between voltage–current characteristics of superconducting filaments, single wires and multistrand cables. Physica C: Superconductivity and Its Applications, 2004, 401, 107-112.	0.6	1
81	The Super-FRS project at GSI. Nuclear Instruments & Methods in Physics Research B, 2003, 204, 71-85.	0.6	257
82	Quench development in long HTS objects-the possibility of "blow-up" regimes and a heat localization. IEEE Transactions on Applied Superconductivity, 2003, 13, 1942-1945.	1.1	8
83	Direct observation of Hall voltage inside the LHD helical conductor. IEEE Transactions on Applied Superconductivity, 2002, 12, 1109-1112.	1.1	Ο
84	Design study of the superconducting magnet for a large acceptance spectrometer. IEEE Transactions on Applied Superconductivity, 2002, 12, 353-357.	1.1	6
85	Stability and quench development in HTS magnets: Influence of cooling and material parameters. AIP Conference Proceedings, 2002, , .	0.3	11
86	Stability and quench development study in small HTSC magnet. Cryogenics, 2001, 41, 665-674.	0.9	27
87	Quench development analysis in HTSC coils by use of the universal scaling theory. IEEE Transactions on Applied Superconductivity, 2001, 11, 1824-1827.	1.1	21
88	Quench development and ultimate normal zone propagation "velocity" in superconductors under fast current change. IEEE Transactions on Applied Superconductivity, 2001, 11, 2118-2121.	1.1	2
89	Universal scaling law for quench development in HTSC devices. Cryogenics, 2000, 40, 19-27.	0.9	82
90	Thermal quench study in HTSC pancake coil. Cryogenics, 2000, 40, 9-17.	0.9	28

#	Article	IF	CITATIONS
91	Current non-uniformity in multistrand superconducting cables. Experimental studies and its influence on stability of superconducting magnets. IEEE Transactions on Applied Superconductivity, 2000, 10, 1190-1195.	1.1	15
92	Temperature and electric field distribution measurement inside of the LHD helical conductor. IEEE Transactions on Applied Superconductivity, 2000, 10, 1259-1262.	1.1	4
93	Experimental study of the current redistribution in pulsed operation inside the Nb/sub 3/Sn CICC of an ITER relevant magnet. IEEE Transactions on Applied Superconductivity, 2000, 10, 1598-1602.	1.1	5
94	Universal Model for Quench Development in HTSC Devices. , 2000, , 866-868.		0
95	Quench propagation in large area YBCO films. IEEE Transactions on Applied Superconductivity, 1999, 9, 1089-1092.	1.1	12
96	Possible solution of the "single strand stability" problem-special cable design. IEEE Transactions on Applied Superconductivity, 1999, 9, 1121-1124.	1.1	1
97	Quench characteristics in HTSC devices. IEEE Transactions on Applied Superconductivity, 1999, 9, 1073-1076.	1.1	27
98	Voltage spikes in superconducting Cable-In-Conduit Conductor under ramped magnetic fields. Part 2: Analysis of loop inductances and current variations associated with the spikes. Cryogenics, 1998, 38, 387-395.	0.9	14
99	Heat propagation and stability in a small high Tc superconductor coil. Physica C: Superconductivity and Its Applications, 1998, 310, 372-376.	0.6	25
100	Current distribution in multistrand superconducting cables — experimental methods and results. Physica C: Superconductivity and Its Applications, 1998, 310, 351-357.	0.6	2
101	Test Set-Up to Study Current Distribution in AC Multistrand Superconducting Cables. , 1998, , 1043-1050.		1
102	Superconducting pulse coil set for stability test of superconducting cables. IEEE Transactions on Applied Superconductivity, 1997, 7, 211-214.	1.1	0
103	Current distribution in a 12 strand Nb/sub 3/Sn CICC and its influence on ramp rate limitation. IEEE Transactions on Applied Superconductivity, 1997, 7, 774-777.	1.1	13
104	Spike voltages seen during "quick charge" ramp limitation tests on Nb/sub 3/Sn cable-in-conduit conductors. IEEE Transactions on Applied Superconductivity, 1997, 7, 150-154.	1.1	22
105	Voltage spike observation in superconducting cable-in-conduit conductor under ramped magnetic fields: 1. Experiment. Cryogenics, 1997, 37, 299-304.	0.9	17
106	Measurements of current distribution in a 12-strand Nb3Sn cable-in-conduit conductor. Cryogenics, 1997, 37, 431-439.	0.9	10
107	Influence of a mutltistrand cable design on its quench development process and stability. Cryogenics, 1997, 37, 517-522.	0.9	2
108	Current redistribution between strands and quench process in a superconducting cable. Cryogenics, 1996, 36, 275-281.	0.9	9

#	Article	IF	CITATIONS
109	Ramp-rate limitation experiments using a hybrid superconducting cable. Cryogenics, 1996, 36, 623-629.	0.9	21
110	The First Mine Countermeasure Devices with Superconducting Magnets. Advances in Cryogenic Engineering, 1996, , 1057-1068.	0.3	1
111	Design and Coil Protection of the High Current Density Autonomous Superconducting Magnets for Mine Sweeping. Advances in Cryogenic Engineering, 1996, , 1069-1076.	0.3	3
112	Persistent Mode Switches and Automatic Power Supplies for Autonomous Superconducting Magnets. Advances in Cryogenic Engineering, 1996, , 1077-1085.	0.3	1
113	On stability of multistrand cables with insulated or highly resistive matrix strands. IEEE Transactions on Applied Superconductivity, 1995, 5, 572-575.	1.1	4
114	Quench protection of very large superconducting magnets. IEEE Transactions on Applied Superconductivity, 1995, 5, 226-229.	1.1	13
115	Anomalous quench propagation in superconductors under fast current decrease. IEEE Transactions on Applied Superconductivity, 1995, 5, 560-563.	1.1	5
116	New method of current distribution studies for ramp rate stability of multistrand superconducting cables. IEEE Transactions on Applied Superconductivity, 1995, 5, 580-583.	1.1	40
117	Acceleration of normal zone propagation in superconductors with changing current. Superconductor Science and Technology, 1994, 7, 154-159.	1.8	11
118	Normal zone origination and propagation in superconducting wire with fast changing current. IEEE Transactions on Magnetics, 1994, 30, 1998-2001.	1.2	5
119	Normal zone propagation velocity in high current NbTi/CuNi superconductor with fast changing current. Cryogenics, 1994, 34, 517-520.	0.9	4
120	Superferric microundulator with high field. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 1993, 331, 748-751.	0.7	2
121	Quench development in superconducting cable having insulated strands with high resistive matrix. I. Experiment. IEEE Transactions on Magnetics, 1992, 28, 735-738.	1.2	50
122	Quench development in superconducting cable having insulated strands with high resistive matrix. II. Analysis. IEEE Transactions on Magnetics, 1992, 28, 739-742.	1.2	39
123	Quench characteristics of a two-strand superconducting cable and the influence of its length. IEEE Transactions on Magnetics, 1992, 28, 743-746.	1.2	13
124	The critical current in a NbTi tape measured in different directions of magnetic field and the current reduction due to the self field. IEEE Transactions on Magnetics, 1992, 28, 755-758.	1.2	13
125	The stability margins of superconducting cables with two insulated strands. Cryogenics, 1992, 32, 419-422.	0.9	4
126	The quench velocity in multifilament superconductor after fast current increasing. Cryogenics, 1992, 32, 435-438.	0.9	11

#	Article	IF	CITATIONS
127	Critical current capacity of superconductors at different AC frequencies. IEEE Transactions on Magnetics, 1991, 27, 2186-2189.	1.2	1
128	The possibility of using high-Tcsuperconducting films as elements of a rectifier. Superconductor Science and Technology, 1990, 3, 259-262.	1.8	14
129	Protection of superconducting magnets with high current density. IEEE Transactions on Magnetics, 1989, 25, 1541-1544.	1.2	9