
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9549108/publications.pdf Version: 2024-02-01

DODTE FREES

#	Article	IF	CITATIONS
1	A porcine model of subcutaneous Staphylococcus aureus infection: a pilot study. Apmis, 2021, , .	0.9	1
2	Cefoxitin treatment of MRSA leads to a shift in the IL-12/IL-23 production pattern in dendritic cells by a mechanism involving changes in the MAPK signaling. Molecular Immunology, 2021, 134, 1-12.	1.0	3
3	A Staphylococcus aureus clpX Mutant Used as a Unique Screening Tool to Identify Cell Wall Synthesis Inhibitors that Reverse β-Lactam Resistance in MRSA. Frontiers in Molecular Biosciences, 2021, 8, 691569.	1.6	2
4	Staphylococcal ClpXP protease targets the cellular antioxidant system to eliminate fitness-compromised cells in stationary phase. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	7
5	SosA in Staphylococci: an addition to the paradigm of membrane-localized, SOS-induced cell division inhibition in bacteria. Current Genetics, 2020, 66, 495-499.	0.8	11
6	A Functional ClpXP Protease is Required for Induction of the Accessory Toxin Genes, tst, sed, and sec. Toxins, 2020, 12, 553.	1.5	8
7	Nisin Damages the Septal Membrane and Triggers DNA Condensation in Methicillin-Resistant Staphylococcus aureus. Frontiers in Microbiology, 2020, 11, 1007.	1.5	32
8	Staphylococcus aureus induces cell-surface expression of immune stimulatory NKG2D ligands on human monocytes. Journal of Biological Chemistry, 2020, 295, 11803-11821.	1.6	10
9	SosA inhibits cell division in <i>Staphylococcus aureus</i> in response to DNA damage. Molecular Microbiology, 2019, 112, 1116-1130.	1.2	26
10	The ClpX chaperone controls autolytic splitting of Staphylococcus aureus daughter cells, but is by l²-lactam antibiotics or inhibitors of WTA biosynthesis. PLoS Pathogens, 2019, 15, e1008044.	2.1	32
11	Antibiotic Resistance and the MRSA Problem. Microbiology Spectrum, 2019, 7, .	1.2	208
12	The Sle1 Cell Wall Amidase Is Essential for β-Lactam Resistance in Community-Acquired Methicillin-Resistant <i>Staphylococcus aureus</i> USA300. Antimicrobial Agents and Chemotherapy, 2019, 64, .	1.4	22
13	Staphylococcus aureus ClpX localizes at the division septum and impacts transcription of genes involved in cell division, T7-secretion, and SaPI5-excision. Scientific Reports, 2019, 9, 16456.	1.6	8
14	Application of an agr-Specific Antivirulence Compound as Therapy for Staphylococcus aureus-Induced Inflammatory Skin Disease. Journal of Infectious Diseases, 2018, 218, 1009-1013.	1.9	26
15	The ClpXP protease is dispensable for degradation of unfolded proteins in Staphylococcus aureus. Scientific Reports, 2017, 7, 11739.	1.6	53
16	Antigen Uptake during Different Life Stages of Zebrafish (Danio rerio) Using a GFP-Tagged Yersinia ruckeri. PLoS ONE, 2016, 11, e0158968.	1.1	18
17	Norlichexanthone Reduces Virulence Gene Expression and Biofilm Formation in Staphylococcus aureus. PLoS ONE, 2016, 11, e0168305.	1.1	53
18	The Cell Wall Polymer Lipoteichoic Acid Becomes Nonessential in Staphylococcus aureus Cells Lacking the ClpX Chaperone. MBio, 2016, 7, .	1.8	42

#	Article	IF	CITATIONS
19	Rifampin Resistance <i>rpoB</i> Alleles or Multicopy Thioredoxin/Thioredoxin Reductase Suppresses the Lethality of Disruption of the Global Stress Regulator <i>spx</i> in Staphylococcus aureus. Journal of Bacteriology, 2016, 198, 2719-2731.	1.0	23
20	Copresence oftet(K) andtet(M) in Livestock-Associated Methicillin-Resistant Staphylococcus aureus Clonal Complex 398 Is Associated with Increased Fitness during Exposure to Sublethal Concentrations of Tetracycline. Antimicrobial Agents and Chemotherapy, 2016, 60, 4401-4403.	1.4	44
21	Stress Responses in Staphylococcus aureus. , 2016, , 221-248.		2
22	Proteomic analyses of iron-responsive, Clp-dependent changes in Staphylococcus aureus. Pathogens and Disease, 2015, 73, .	0.8	16
23	Stepwise Decrease in Daptomycin Susceptibility in Clinical Staphylococcus aureus Isolates Associated with an Initial Mutation in <i>rpoB</i> and a Compensatory Inactivation of the <i>clpX</i> Gene. Antimicrobial Agents and Chemotherapy, 2015, 59, 6983-6991.	1.4	74
24	β-Lactam Resistance in Methicillin-Resistant Staphylococcus aureus USA300 ls Increased by Inactivation of the ClpXP Protease. Antimicrobial Agents and Chemotherapy, 2014, 58, 4593-4603.	1.4	82
25	Clp chaperones and proteases are central in stress survival, virulence and antibiotic resistance of Staphylococcus aureus. International Journal of Medical Microbiology, 2014, 304, 142-149.	1.5	143
26	Solonamide B Inhibits Quorum Sensing and Reduces Staphylococcus aureus Mediated Killing of Human Neutrophils. PLoS ONE, 2014, 9, e84992.	1.1	97
27	Regulation of Host Hemoglobin Binding by the Staphylococcus aureus Clp Proteolytic System. Journal of Bacteriology, 2013, 195, 5041-5050.	1.0	44
28	Trapping and Proteomic Identification of Cellular Substrates of the ClpP Protease in <i>Staphylococcus aureus</i> . Journal of Proteome Research, 2013, 12, 547-558.	1.8	130
29	The role of Serpine-1 and Tissue inhibitor of metalloproteinase type-1 in early host responses toStaphylococcus aureusintracutaneous infection of mice. Pathogens and Disease, 2013, 68, 96-104.	0.8	7
30	Bacterial Proteases and Virulence. Sub-Cellular Biochemistry, 2013, 66, 161-192.	1.0	117
31	A New Technique for Modeling of Hematogenous Osteomyelitis in Pigs: Inoculation into Femoral Artery. Journal of Investigative Surgery, 2013, 26, 149-153.	0.6	20
32	Genetic Variation in the Staphylococcus aureus 8325 Strain Lineage Revealed by Whole-Genome Sequencing. PLoS ONE, 2013, 8, e77122.	1.1	54
33	Therapy of haematogenous osteomyelitis–a comparative study in a porcine model and Angolan children. In Vivo, 2013, 27, 305-12.	0.6	9
34	The YjbH Adaptor Protein Enhances Proteolysis of the Transcriptional Regulator Spx in Staphylococcus aureus. Journal of Bacteriology, 2012, 194, 1186-1194.	1.0	55
35	Antibiotic-Mediated Selection of Quorum-Sensing-Negative Staphylococcus aureus. MBio, 2012, 3, e00459-12.	1.8	85
36	New Insights into <i>Staphylococcus aureus</i> Stress Tolerance and Virulence Regulation from an Analysis of the Role of the ClpP Protease in the Strains Newman, COL, and SA564. Journal of Proteome Research, 2012, 11, 95-108.	1.8	59

#	Article	IF	CITATIONS
37	Planktonic Aggregates of Staphylococcus aureus Protect against Common Antibiotics. PLoS ONE, 2012, 7, e41075.	1.1	144
38	Local osteogenic expression of cyclooxygenase-2 and systemic response in porcine models of osteomyelitis. Prostaglandins and Other Lipid Mediators, 2012, 97, 103-108.	1.0	9
39	A porcine model of acute, haematogenous, localized osteomyelitis due to <i>Staphylococcus aureus</i> : a pathomorphological study. Apmis, 2011, 119, 111-118.	0.9	33
40	Expression and secretion of the RTX-toxin GtxA among members of the genus Gallibacterium. Veterinary Microbiology, 2011, 153, 116-123.	0.8	34
41	Searching for small σB-regulated genes in Staphylococcus aureus. Archives of Microbiology, 2011, 193, 23-34.	1.0	39
42	Clp-dependent proteolysis of the LexA N-terminal domain in Staphylococcus aureus. Microbiology (United Kingdom), 2011, 157, 677-684.	0.7	26
43	The Chaperone ClpX Stimulates Expression of Staphylococcus aureus Protein A by Rot Dependent and Independent Pathways. PLoS ONE, 2010, 5, e12752.	1.1	40
44	Method for Screening Compounds That Influence Virulence Gene Expression in <i>Staphylococcus aureus</i> . Antimicrobial Agents and Chemotherapy, 2010, 54, 509-512.	1.4	45
45	Growth phase-dependent regulation of the global virulence regulator Rot in clinical isolates of Staphylococcus aureus. International Journal of Medical Microbiology, 2010, 300, 229-236.	1.5	29
46	GtxA from <i>Gallibacterium anatis</i> , a cytolytic RTX-toxin with a novel domain organisation. Veterinary Research, 2010, 41, 25.	1.1	44
47	SpxB Regulates O-Acetylation-dependent Resistance of Lactococcus lactis Peptidoglycan to Hydrolysis. Journal of Biological Chemistry, 2007, 282, 19342-19354.	1.6	86
48	Clp ATPases and ClpP proteolytic complexes regulate vital biological processes in low GC, Gram-positive bacteria. Molecular Microbiology, 2007, 63, 1285-1295.	1.2	255
49	Spx Is a Global Effector Impacting Stress Tolerance and Biofilm Formation in Staphylococcus aureus. Journal of Bacteriology, 2006, 188, 4861-4870.	1.0	150
50	Staphylococcus aureus ClpYQ plays a minor role in stress survival. Archives of Microbiology, 2005, 183, 286-291.	1.0	26
51	Global Virulence Regulation in Staphylococcus aureus: Pinpointing the Roles of ClpP and ClpX in the sar/agr Regulatory Network. Infection and Immunity, 2005, 73, 8100-8108.	1.0	98
52	Clp ATPases are required for stress tolerance, intracellular replication and biofilm formation in Staphylococcus aureus. Molecular Microbiology, 2004, 54, 1445-1462.	1.2	287
53	Identification of proteins induced at low pH in Lactococcus lactis. International Journal of Food Microbiology, 2003, 87, 293-300.	2.1	83
54	Heat and DNA damage induction of the LexA-like regulator HdiR from Lactococcus lactis is mediated by RecA and ClpP. Molecular Microbiology, 2003, 50, 609-621.	1.2	48

#	Article	IF	CITATIONS
55	Alternative roles of ClpX and ClpP in Staphylococcus aureus stress tolerance and virulence. Molecular Microbiology, 2003, 48, 1565-1578.	1.2	291
56	Inactivation of a gene that is highly conserved in Gram-positive bacteria stimulates degradation of non-native proteins and concomitantly increases stress tolerance in Lactococcus lactis. Molecular Microbiology, 2001, 41, 93-103.	1.2	49
57	ClpP participates in the degradation of misfolded protein in Lactococcus lactis. Molecular Microbiology, 1999, 31, 79-87.	1.2	130
58	Antibiotic Resistance and the MRSA Problem. , 0, , 747-765.		11
59	Finding New Fundamental Pieces for the Bacterial Cell Division Puzzle. MBio, 0, , .	1.8	0