
Kyoung Lee

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9548661/publications.pdf Version: 2024-02-01

KYOUNG LEE

#	Article	IF	CITATIONS
1	Complete Genome Sequence of Aureimonas sp. Strain OT7, Isolated from Human Skin. Microbiology Resource Announcements, 2021, 10, .	0.6	3
2	Complete Genome Sequence of <i>Gordonia</i> sp. Strain JH63, Isolated from Human Skin. Microbiology Resource Announcements, 2020, 9, .	0.6	3
3	Mutants defective in the production of encapsulin show a tan-phase-locked phenotype in Myxococcus xanthus. Journal of Microbiology, 2019, 57, 795-802.	2.8	14
4	Complete Genome Sequence of Kocuria indica CE7, Isolated from Human Skin. Microbiology Resource Announcements, 2019, 8, .	0.6	6
5	First Complete Genome Sequence of Haematobacter massiliensis OT1 (Chromosome and Multiple) Tj ETQq1 1	0.784314	rgBT /Overloo
6	Complete Genome Sequence of Paracoccus yeei TT13, Isolated from Human Skin. Genome Announcements, 2018, 6, .	0.8	18
7	Complete Genome Sequences of Three Moraxella osloensis Strains Isolated from Human Skin. Genome Announcements, 2018, 6, .	0.8	4
8	Circular pellicles formed by Pseudomonas alkylphenolica KL28 are a sophisticated architecture principally designed by matrix substance. Journal of Microbiology, 2018, 56, 790-797.	2.8	0
9	Transposon Mutagenesis Identifies Genes Critical for Growth of Pseudomonas nitroreducens TX1 on Octylphenol Polyethoxylates. Applied and Environmental Microbiology, 2016, 82, 6584-6592.	3.1	12
10	Molecular modeling and redesign of alginate lyase from <i>Pseudomonas aeruginosa</i> for accelerating CRPA biofilm degradation. Proteins: Structure, Function and Bioinformatics, 2016, 84, 1875-1887.	2.6	11
11	A CHASE3/GAF sensor hybrid histidine kinase BmsA modulates biofilm formation and motility in Pseudomonas alkylphenolica. Microbiology (United Kingdom), 2016, 162, 1945-1954.	1.8	3
12	Modeling and Re-Engineering of Azotobacter vinelandii Alginate Lyase to Enhance Its Catalytic Efficiency for Accelerating Biofilm Degradation. PLoS ONE, 2016, 11, e0156197.	2.5	26
13	Occurrence, Human Intake and Biodegradation of Estrogen-Like Nonylphenols and Octylphenols. Current Drug Metabolism, 2016, 17, 293-302.	1.2	18
14	Identification of three pathways for p-cresol catabolism and their gene expression in Pseudomonas alkylphenolica KL28. Korean Journal of Microbiology, 2016, 52, 298-305.	0.2	0
15	Pseudomonas alkylphenolica sp. nov., a bacterial species able to form special aerial structures when grown on p-cresol. International Journal of Systematic and Evolutionary Microbiology, 2015, 65, 4013-4018.	1.7	31
16	An alginate-like exopolysaccharide biosynthesis gene cluster involved in biofilm aerial structure formation by Pseudomonas alkylphenolia. Applied Microbiology and Biotechnology, 2014, 98, 4137-4148.	3.6	16
17	Complete genome sequence of the mushroom-like aerial structure-forming Pseudomonas alkylphenolia, a platform bacterium for mass production of poly-β-d-mannuronates. Journal of Biotechnology, 2014, 192, 20-21.	3.8	9
18	Construction of Overexpression Vectors and Purification of the Oxygenase Component of Alkylphenol Hydroxylase of Pseudomonas alkylphenolia. Korean Journal of Microbiology, 2013, 49, 95-98.	0.2	1

KYOUNG LEE

#	Article	IF	CITATIONS
19	Ssg, a putative glycosyltransferase, functions in lipo- and exopolysaccharide biosynthesis and cell surface-related properties in Pseudomonas alkylphenolia. FEMS Microbiology Letters, 2011, 315, 38-45.	1.8	24
20	Augmented production of poly- \hat{l}^2 -d-mannuronate and its acetylated forms by Pseudomonas. Process Biochemistry, 2011, 46, 328-334.	3.7	12
21	Synthesis and characterization of conducting polypyrrole-polymannuronate nanocomposites. Journal of Polymer Research, 2010, 17, 233-239.	2.4	17
22	Crystal Structure and Functional Analysis of the Extradiol Dioxygenase LapB from a Long-chain Alkylphenol Degradation Pathway in Pseudomonas. Journal of Biological Chemistry, 2009, 284, 34321-34330.	3.4	22
23	Formation of specialized aerial architectures by Rhodococcus during utilization of vaporized p-cresol. Microbiology (United Kingdom), 2009, 155, 3788-3796.	1.8	15
24	Surface characterization and electrical behavior of polyaniline–polymannuronate nanocomposites. Journal of Polymer Science, Part B: Polymer Physics, 2009, 47, 36-45.	2.1	28
25	Ultramicrocells form by reductive division in macroscopic <i>Pseudomonas</i> aerial structures. Environmental Microbiology, 2009, 11, 1117-1125.	3.8	14
26	Mutation ofrpoSenhancesPseudomonassp. KL28 growth at higher concentrations ofm-cresol and changes its surface-related phenotypes. FEMS Microbiology Letters, 2007, 269, 97-103.	1.8	13
27	Effect of gacS and gacA mutations on colony architecture, surface motility, biofilm formation and chemical toxicity in Pseudomonas sp. KL28. Journal of Microbiology, 2007, 45, 492-8.	2.8	19
28	p-Hydroxylation reactions catalyzed by naphthalene dioxygenase. FEMS Microbiology Letters, 2006, 255, 316-320.	1.8	15
29	Identification and expression of the cym, cmt, and tod catabolic genes from Pseudomonas putida KL47: expression of the regulatory todST genes as a factor for catabolic adaptation. Journal of Microbiology, 2006, 44, 192-9.	2.8	7
30	Expansion of growth substrate range in Pseudomonas putida F1 by mutations in both cymR and todS, which recruit a ring-fission hydrolase CmtE and induce the tod catabolic operon, respectively. Microbiology (United Kingdom), 2003, 149, 795-805.	1.8	42
31	3- and 4-alkylphenol degradation pathway in Pseudomonas sp. strain KL28: genetic organization of the lap gene cluster and substrate specificities of phenol hydroxylase and catechol 2,3-dioxygenase. Microbiology (United Kingdom), 2003, 149, 3265-3277.	1.8	82
32	Improved degradation of 4-chlorobiphenyl, 2,3-dihydroxybiphenyl, and catecholic compounds by recombinant bacterial strains. Biotechnology and Bioprocess Engineering, 2001, 6, 56-60.	2.6	0
33	Benzene-Induced Uncoupling of Naphthalene Dioxygenase Activity and Enzyme Inactivation by Production of Hydrogen Peroxide. Journal of Bacteriology, 1999, 181, 2719-2725.	2.2	82
34	Structure of an aromatic-ring-hydroxylating dioxygenase – naphthalene 1,2-dioxygenase. Structure, 1998, 6, 571-586.	3.3	512