Nico Ghilardi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9548629/publications.pdf

Version: 2024-02-01

44066 106340 13,053 67 48 65 citations h-index g-index papers 67 67 67 15862 all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	Interleukin-22 mediates early host defense against attaching and effacing bacterial pathogens. Nature Medicine, 2008, 14, 282-289.	30.7	1,670
2	Interleukin-23 Promotes a Distinct CD4 T Cell Activation State Characterized by the Production of Interleukin-17. Journal of Biological Chemistry, 2003, 278, 1910-1914.	3.4	1,595
3	Interleukin 27 limits autoimmune encephalomyelitis by suppressing the development of interleukin 17–producing T cells. Nature Immunology, 2006, 7, 929-936.	14.5	763
4	Defective STAT signaling by the leptin receptor in diabetic mice Proceedings of the National Academy of Sciences of the United States of America, 1996, 93, 6231-6235.	7.1	728
5	Leptin Receptor Immunoreactivity in Chemically Defined Target Neurons of the Hypothalamus. Journal of Neuroscience, 1998, 18, 559-572.	3.6	694
6	Divergent roles of IL-23 and IL-12 in host defense against <i>Klebsiella pneumoniae </i> Lyournal of Experimental Medicine, 2005, 202, 761-769.	8.5	549
7	CRIg: A Macrophage Complement Receptor Required for Phagocytosis of Circulating Pathogens. Cell, 2006, 124, 915-927.	28.9	526
8	IL-23 Compensates for the Absence of IL-12p70 and Is Essential for the IL-17 Response during Tuberculosis but Is Dispensable for Protection and Antigen-Specific IFN-Î ³ Responses if IL-12p70 Is Available. Journal of Immunology, 2005, 175, 788-795.	0.8	422
9	IL-27 regulates IL-12 responsiveness of naive CD4+ T cells through Stat1-dependent and -independent mechanisms. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 15047-15052.	7.1	416
10	Development of Th1-type immune responses requires the type I cytokine receptor TCCR. Nature, 2000, 407, 916-920.	27.8	352
11	A mouse knockout library for secreted and transmembrane proteins. Nature Biotechnology, 2010, 28, 749-755.	17.5	316
12	The Leptin Receptor Activates Janus Kinase 2 and Signals for Proliferation in a Factor-Dependent Cell Line. Molecular Endocrinology, 1997, 11, 393-399.	3.7	282
13	Interleukin 12p40 is required for dendritic cell migration and T cell priming after Mycobacterium tuberculosis infection. Journal of Experimental Medicine, 2006, 203, 1805-1815.	8.5	276
14	Interleukin (IL)-23 mediates <i>Toxoplasma gondii</i> à€"induced immunopathology in the gut via matrixmetalloproteinase-2 and IL-22 but independent of IL-17. Journal of Experimental Medicine, 2009, 206, 3047-3059.	8.5	262
15	Oral-resident natural Th17 cells and $\hat{I}^3\hat{I}^*$ T cells control opportunistic <i>Candida albicans</i> Journal of Experimental Medicine, 2014, 211, 2075-2084.	8.5	217
16	The role of IL-22 in intestinal health and disease. Journal of Experimental Medicine, 2020, 217, e20192195.	8.5	217
17	Cutting Edge: IL-27 Is a Potent Inducer of IL-10 but Not FoxP3 in Murine T Cells. Journal of Immunology, 2008, 180, 2752-2756.	0.8	197
18	IL-27 supports germinal center function by enhancing IL-21 production and the function of T follicular helper cells. Journal of Experimental Medicine, 2010, 207, 2895-2906.	8.5	185

#	Article	IF	CITATIONS
19	Compromised Humoral and Delayed-Type Hypersensitivity Responses in IL-23-Deficient Mice. Journal of Immunology, 2004, 172, 2827-2833.	0.8	182
20	Discovery of GDC-0853: A Potent, Selective, and Noncovalent Bruton's Tyrosine Kinase Inhibitor in Early Clinical Development. Journal of Medicinal Chemistry, 2018, 61, 2227-2245.	6.4	177
21	Type I IFN Induces IL-10 Production in an IL-27–Independent Manner and Blocks Responsiveness to IFN-γ for Production of IL-12 and Bacterial Killing in <i>Mycobacterium tuberculosis</i> PâculosisInfected Macrophages. Journal of Immunology, 2014, 193, 3600-3612.	0.8	169
22	Hedgehog Signaling Is Dispensable for Adult Murine Hematopoietic Stem Cell Function and Hematopoiesis. Cell Stem Cell, 2009, 4, 559-567.	11.1	157
23	Intestinal lamina propria dendritic cells maintain T cell homeostasis but do not affect commensalism. Journal of Experimental Medicine, 2013, 210, 2011-2024.	8.5	144
24	IL-27 Signaling Compromises Control of Bacterial Growth in Mycobacteria-Infected Mice. Journal of Immunology, 2004, 173, 7490-7496.	0.8	129
25	Hereditary thrombocythaemia in a Japanese family is caused by a novel point mutation in the thrombopoietin gene. British Journal of Haematology, 1999, 107, 310-316.	2.5	128
26	IL-27 promotes T cell–dependent colitis through multiple mechanisms. Journal of Experimental Medicine, 2011, 208, 115-123.	8.5	121
27	The biology and therapeutic potential of interleukin 27. Journal of Molecular Medicine, 2007, 85, 661-672.	3.9	119
28	NF- \hat{l}^{0} B inducing kinase is a therapeutic target for systemic lupus erythematosus. Nature Communications, 2018, 9, 179.	12.8	98
29	A Restricted Role for TYK2 Catalytic Activity in Human Cytokine Responses Revealed by Novel TYK2-Selective Inhibitors. Journal of Immunology, 2013, 191, 2205-2216.	0.8	97
30	IL-23 Is Required for Protection against Systemic Infection with <i>Listeria monocytogenes</i> . Journal of Immunology, 2009, 183, 8026-8034.	0.8	96
31	Opposing consequences of IL-23 signaling mediated by innate and adaptive cells in chemically induced colitis in mice. Mucosal Immunology, 2012, 5, 99-109.	6.0	96
32	Functional Studies on the IBD Susceptibility Gene IL23R Implicate Reduced Receptor Function in the Protective Genetic Variant R381Q. PLoS ONE, 2011, 6, e25038.	2.5	93
33	Identification of Imidazo-Pyrrolopyridines as Novel and Potent JAK1 Inhibitors. Journal of Medicinal Chemistry, 2012, 55, 5901-5921.	6.4	85
34	Homeostatic IL-23 receptor signaling limits Th17 response through IL-22–mediated containment of commensal microbiota. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 13942-13947.	7.1	85
35	T Cell–Derived IL-10 Impairs Host Resistance to <i>Mycobacterium tuberculosis</i> Infection. Journal of Immunology, 2017, 199, 613-623.	0.8	83
36	Lead identification of novel and selective TYK2 inhibitors. European Journal of Medicinal Chemistry, 2013, 67, 175-187.	5.5	80

#	Article	IF	Citations
37	A Single-Base Deletion in the Thrombopoietin (TPO) Gene Causes Familial Essential Thrombocythemia Through a Mechanism of More Efficient Translation of TPO mRNA. Blood, 1999, 94, 1480-1482.	1.4	7 5
38	IL-31–IL-31R interactions negatively regulate type 2 inflammation in the lung. Journal of Experimental Medicine, 2007, 204, 481-487.	8.5	75
39	Targeting the development and effector functions of TH17 cells. Seminars in Immunology, 2007, 19, 383-393.	5.6	73
40	Lead Optimization of a 4-Aminopyridine Benzamide Scaffold To Identify Potent, Selective, and Orally Bioavailable TYK2 Inhibitors. Journal of Medicinal Chemistry, 2013, 56, 4521-4536.	6.4	72
41	Thrombopoietin Production Is Inhibited by a Translational Mechanism. Blood, 1998, 92, 4023-4030.	1.4	68
42	A Novel Type I Cytokine Receptor Is Expressed on Monocytes, Signals Proliferation, and Activates STAT-3 and STAT-5. Journal of Biological Chemistry, 2002, 277, 16831-16836.	3.4	66
43	Interleukin 27R regulates CD4+ T cell phenotype and impacts protective immunity during <i>Mycobacterium tuberculosis</i> infection. Journal of Experimental Medicine, 2015, 212, 1449-1463.	8.5	66
44	Permissive role of thrombopoietin and granulocyte colony-stimulating factor receptors in hematopoietic cell fate decisions in vivo. Proceedings of the National Academy of Sciences of the United States of America, 1999, 96, 698-702.	7.1	62
45	The Adaptor CARD9 Is Required for Adaptive but Not Innate Immunity to Oral Mucosal Candida albicans Infections. Infection and Immunity, 2014, 82, 1173-1180.	2.2	57
46	TGFÎ ² 2 and TGFÎ ² 3 isoforms drive fibrotic disease pathogenesis. Science Translational Medicine, 2021, 13, .	12.4	56
47	Identification of <i>C</i> -2 Hydroxyethyl Imidazopyrrolopyridines as Potent JAK1 Inhibitors with Favorable Physicochemical Properties and High Selectivity over JAK2. Journal of Medicinal Chemistry, 2013, 56, 4764-4785.	6.4	55
48	Negative regulation of autoimmune demyelination by the inhibitory receptor CLM-1. Journal of Experimental Medicine, 2010, 207, 7-16.	8.5	51
49	Discovery and Optimization of $\langle i \rangle C \langle j \rangle - 2$ Methyl Imidazopyrrolopyridines as Potent and Orally Bioavailable JAK1 Inhibitors with Selectivity over JAK2. Journal of Medicinal Chemistry, 2012, 55, 6176-6193.	6.4	50
50	Hereditary thrombocythaemia is a genetically heterogeneous disorder: exclusion of TPO and MPL in two families with hereditary thrombocythaemia. British Journal of Haematology, 2000, 110, 104-109.	2.5	42
51	Blockade of interleukin-27 signaling reduces GVHD in mice by augmenting Treg reconstitution and stabilizing Foxp3 expression. Blood, 2016, 128, 2068-2082.	1.4	38
52	Scaffold-Hopping Approach To Discover Potent, Selective, and Efficacious Inhibitors of NF-κB Inducing Kinase. Journal of Medicinal Chemistry, 2018, 61, 6801-6813.	6.4	38
53	2-Amino-[1,2,4]triazolo[1,5-a]pyridines as JAK2 inhibitors. Bioorganic and Medicinal Chemistry Letters, 2013, 23, 5014-5021.	2.2	35
54	Inhibition of the kinase ITK in a mouse model of asthma reduces cell death and fails to inhibit the inflammatory response. Science Signaling, 2015, 8, ra122.	3.6	35

#	Article	lF	CITATIONS
55	Nonselective inhibition of the epigenetic transcriptional regulator BET induces marked lymphoid and hematopoietic toxicity in mice. Toxicology and Applied Pharmacology, 2016, 300, 47-54.	2.8	35
56	IL-27 Directly Enhances Germinal Center B Cell Activity and Potentiates Lupus in <i>Sanroque</i> Mice. Journal of Immunology, 2016, 197, 3008-3017.	0.8	27
57	Regulation of myeloid progenitor cell proliferation/survival by IL-31 receptor and IL-31. Experimental Hematology, 2007, 35, 78-86.	0.4	24
58	Lung-restricted inhibition of Janus kinase 1 is effective in rodent models of asthma. Science Translational Medicine, 2018, 10 , .	12.4	24
59	Discovery of a class of highly potent Janus Kinase 1/2 (JAK1/2) inhibitors demonstrating effective cell-based blockade of IL-13 signaling. Bioorganic and Medicinal Chemistry Letters, 2019, 29, 1522-1531.	2.2	23
60	The kinase IRAK4 promotes endosomal TLR and immune complex signaling in B cells and plasmacytoid dendritic cells. Science Signaling, 2020, 13, .	3.6	22
61	Structure-based discovery of C-2 substituted imidazo-pyrrolopyridine JAK1 inhibitors with improved selectivity over JAK2. Bioorganic and Medicinal Chemistry Letters, 2012, 22, 7627-7633.	2.2	20
62	Novel triazolo-pyrrolopyridines as inhibitors of Janus kinase 1. Bioorganic and Medicinal Chemistry Letters, 2013, 23, 3592-3598.	2.2	17
63	The peptide symporter SLC15a4 is essential for the development of systemic lupus erythematosus in murine models. PLoS ONE, 2021, 16, e0244439.	2.5	17
64	Identification of an imidazopyridine scaffold to generate potent and selective TYK2 inhibitors that demonstrate activity in an in vivo psoriasis model. Bioorganic and Medicinal Chemistry Letters, 2017, 27, 4370-4376.	2.2	13
65	30 Years of Biotherapeutics Development—What Have We Learned?. Annual Review of Immunology, 2020, 38, 249-287.	21.8	11
66	Bystanders Not So Innocent after All. Immunity, 2012, 36, 901-903.	14.3	0
67	Hereditary Thrombocythemia. , 2004, , 99-105.		0