
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9548528/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Stereoselective Transesterification of <i>P</i> â€Chirogenic Hydroxybinaphthyl Phosphinates. ChemistryOpen, 2022, , e202100294.	1.9	3
2	5- <i>N</i> -Arylaminothiazoles with pyridyl groups and their first-row transition metal complexes: synthesis, photophysical properties, and Zn sensing. RSC Advances, 2022, 12, 14698-14706.	3.6	3
3	Boron complexes of thiazole-bridged 1,5-bidentate nitrogen ligands: synthesis and acid-responsive photophysical properties. Organic and Biomolecular Chemistry, 2021, 19, 6804-6811.	2.8	10
4	lmidazo[1,5- <i>a</i>]pyridinylidenes as π-Accepting NHC Ligands in Catalysis. Chemistry Letters, 2021, 50, 1892-1900.	1.3	7
5	Primary Phosphines and Phosphine Oxides with a Stereogenic Carbon Center Adjacent to the Phosphorus Atom: Synthesis and Anti-Markovnikov Radical Addition to Alkenes. Organics, 2021, 2, 395-403.	1.3	6
6	Hormetic Effects of Binaphthyl Phosphonothioates as Pro-oxidants and Antioxidants. Chemical Research in Toxicology, 2020, 33, 2892-2902.	3.3	8
7	Transfer Semihydrogenation of Alkynes Catalyzed by Imidazo[1,5- <i>a</i>]pyrid-3-ylidene–Pd Complexes: Positive Effects of Electronic and Steric Features on N-Heterocyclic Carbene Ligands. Bulletin of the Chemical Society of Japan, 2020, 93, 332-337.	3.2	15
8	Chemoselective and Stereoselective Alcoholysis of Binaphthyl Phosphonothioates: Straightforward Access to Both Stereoisomers of Biologically Relevant <i>P</i> -Stereogenic Phosphonothioates. Journal of Organic Chemistry, 2020, 85, 14446-14455.	3.2	14
9	<i>N</i> , <i>N</i> -Diarylthiazol-5-amines: Structure-Specific Mechanofluorochromism and White Light Emission in the Solid State. Bulletin of the Chemical Society of Japan, 2020, 93, 927-935.	3.2	23
10	P-stereogenic phosphinothioic acids, phosphonothioic acids and their esters: Syntheses, reactions, and applications. Tetrahedron, 2020, 76, 131152.	1.9	7
11	5-Amino-2-thiazolylpyridine N-Oxides: Synthesis and Properties. Heterocycles, 2020, 101, 611.	0.7	2
12	A Modular Approach to Phosphorescent π-Extended Heteroacenes. Inorganic Chemistry, 2019, 58, 13323-13336.	4.0	20
13	Reaction of Thioamides. , 2019, , 75-101.		0
14	2â€(2â€Hydroxyphenyl)â€5â€aminothiazoles: Synthesis and Properties Involving Dual Emissions. Asian Journal of Organic Chemistry, 2019, 8, 1102-1106.	2.7	9
15	Replacement of Elements, from Unexpected Encounter to Accidental Departure. Yuki Gosei Kagaku Kyokaishi/Journal of Synthetic Organic Chemistry, 2019, 77, 1030-1033.	0.1	0
16	Selenolactams as Synthetic Intermediates for the Synthesis of Polycyclic Amines via Seleno-Claisen Rearrangements. Journal of Organic Chemistry, 2018, 83, 3078-3089.	3.2	10
17	Chelationâ€Assisted β‧elective Direct Câ^'H Bond Arylation of 2â€Thienylthioamide Catalyzed by Palladium–1,10â€Phenanthroline Complexes. Asian Journal of Organic Chemistry, 2018, 7, 1323-1326.	2.7	8
18	Hydrolysis of Phosphonothioates with a Binaphthyl Group: P-Stereogenic O-Binaphthyl Phosphonothioic Acids and Their Use as Optically Active Ligands and Chiral Discriminating Agents. Organic Letters, 2018, 20, 1375-1379.	4.6	17

#	Article	IF	CITATIONS
19	Synthesis of <i>P</i> â€stereogenic phosphonothioates via alcoholysis of phosphonothioates with a binaphthyl group. Heteroatom Chemistry, 2018, 29, .	0.7	6
20	Synthesis of Chiral Selenazolines from <i>N</i> -Acyloxazolidinones via a Selenative Rearrangement of Chiral Cyclic Skeletons. Organic Letters, 2018, 20, 5826-5830.	4.6	20
21	The Construction and Application of C=S Bonds. Topics in Current Chemistry, 2018, 376, 31.	5.8	25
22	Synthesis and Photophysical Properties of 5-N-Arylaminothiazoles with Sulfur-Containing Groups on the Aromatic Ring at the 2-Position. Heterocycles, 2018, 97, 409.	0.7	2
23	Imidazo[1,5-a]pyridin-3-ylidenes as π-accepting carbene ligands: substituent effects on properties of N-heterocyclic carbenes. Organic and Biomolecular Chemistry, 2017, 15, 1810-1820.	2.8	39
24	Synthesis of <i>P</i> -Stereogenic Phosphinates via an Axis-to-Center Chirality Transfer by the Reaction of Phosphonates Having a Binaphthyloxy Group with Grignard Reagents. Chemistry Letters, 2017, 46, 1068-1071.	1.3	20
25	The First Selenium Isologues of 2-Pyrones and Coumarins: Synthesis, Structures, and Reactions. Chemistry Letters, 2017, 46, 1017-1019.	1.3	8
26	Experimental and Theoretical Examination of the Radical Cations Obtained from the Chemical and Electrochemical Oxidation of 5â€Aminothiazoles. ChemistryOpen, 2017, 6, 282-287.	1.9	7
27	Synthesis and Photophysical Properties of 5- <i>N</i> -Arylamino-4-methylthiazoles Obtained from Direct C–H Arylations and Buchwald–Hartwig Aminations of 4-Methylthiazole. Organometallics, 2017, 36, 2552-2558.	2.3	16
28	Employing BINOLâ€Phosphoroselenoyl Chloride for Selective Inositol Phosphorylation and Synthesis of Glycosyl Inositol Phospholipid from <i>Entamoeba histolytica</i> . Chemistry - A European Journal, 2017, 23, 8304-8308.	3.3	15
29	Pyridinium 5-aminothiazoles: specific photophysical properties and vapochromism in halogenated solvents. RSC Advances, 2017, 7, 18132-18135.	3.6	13
30	Acidâ€Responsive Absorption and Emission of 5â€ <i>N</i> â€Arylaminothiazoles: Emission of White Light from a Single Fluorescent Dye and a Lewis Acid. ChemistryOpen, 2016, 5, 434-438.	1.9	34
31	Sequential Deprotonation–Alkylation of Binaphthyloxy-Substituted Phosphonochalcogenoates: Chiral Tri- and Tetrasubstituted Carbon Centers Adjacent to a Phosphorus Atom. Organic Letters, 2016, 18, 5264-5267.	4.6	12
32	Sequential Addition Reaction of Sulfanylmethyllithiums and Grignard Reagents to Thioformamides Leading to the Formation of 2-Phenyl-2-sulfanylethyl Tertiary Amines. Journal of Organic Chemistry, 2016, 81, 8131-8134.	3.2	5
33	1-Substituted-imidazo[1,5- <i>a</i>]pyridin-3-ylidenes as Highly Efficient Ligands for Rh- and Ir-catalyzed Transfer Hydrogenation of Carbonyl Compounds. Chemistry Letters, 2016, 45, 1327-1329.	1.3	15
34	Acid-Responsive Absorption and Emission of 5-N-Arylaminothiazoles: Emission of White Light from a Single Fluorescent Dye and a Lewis Acid. ChemistryOpen, 2016, 5, 396-396.	1.9	6
35	Discrimination of remote chirality of primary alcohols using 1,1′-binaphthyl-2,2′-DIYL phosphoroselenoyl chlorides as a chiral molecular tool. Phosphorus, Sulfur and Silicon and the Related Elements, 2016, 191, 163-173.	1.6	12
36	Phosphonoselenoic acid esters from the reaction between phosphoroselenoyl chlorides and Grignard reagents: synthetic and stereochemical aspects. RSC Advances, 2016, 6, 15180-15183.	3.6	11

#	Article	IF	CITATIONS
37	Rhodium(I) and iridium(I) imidazo[1,5-a]pyridine-1-ylalkylalkoxy complexes: Synthesis, characterization and application as catalysts forÂhydrosilylation of alkynes. Journal of Organometallic Chemistry, 2015, 794, 76-80.	1.8	17
38	α-Hydroxy and α-Oxo Selenoamides: Synthesis via Nucleophilic Selenocarbamoylation of Carbonyl Compounds and Characterization. Journal of Organic Chemistry, 2015, 80, 6903-6907.	3.2	16
39	Direct C–H Bond Arylation of Thienyl Thioamides Catalyzed by Pd–Phenanthroline Complexes. Organic Letters, 2015, 17, 5392-5395.	4.6	37
40	5-N-Arylaminothiazoles as Highly Twisted Fluorescent Monocyclic Heterocycles: Synthesis and Characterization. Journal of Organic Chemistry, 2015, 80, 10742-10756.	3.2	40
41	Kinetic Resolution of Secondary 2â€Arylâ€1â€cycloalkanols with Phosphoroselenoyl Chloride with a Binaphthyl Group. Heteroatom Chemistry, 2014, 25, 337-347.	0.7	3
42	Copperâ€Catalyzed Ci£¿H Bond Direct Chalcogenation of Aromatic Compounds Leading to Diaryl Sulfides, Selenides, and Diselenides by Using Elemental Sulfur and Selenium as Chalcogen Sources Under Oxidative Conditions. Chemistry - an Asian Journal, 2014, 9, 237-244.	3.3	84
43	Fluorinative hydrolysis of phosphorothioic acid esters with a binaphthyl group through axis-to-center chirality transfer leading to the formation of P-chiral phosphorothioic monofluoridic acid salts. Chemical Communications, 2014, 50, 12473-12475.	4.1	15
44	Facile Synthetic Method for Diverse Polyfunctionalized Imidazoles by Means of Pd-Catalyzed C–H Bond Arylation of <i>N</i> -Methyl-4,5-dibromoimidazole. Journal of Organic Chemistry, 2014, 79, 7185-7192.	3.2	40
45	Reaction of Selenoamide Dianions with Thio- and Selenoformamides Leading to the Formation of 5-Aminoselenazoles: Photophysical and Electrochemical Properties. Journal of Organic Chemistry, 2014, 79, 4930-4939.	3.2	26
46	Aromatic Selenoic, Selenothioic, and Diselenoic Acid Salts: Isolation, Characterization, and 77Se NMR Spectra, Together with Theoretical Elucidation. Bulletin of the Chemical Society of Japan, 2014, 87, 677-692.	3.2	7
47	Transformation of RN=CHPh to R(R′ ₃ Si)NCH ₂ Ph in the Catalytic Desulfurization of Secondary Thioamide with R′ ₃ SiH Promoted by an Iron Complex. Heteroatom Chemistry, 2014, 25, 607-611.	0.7	2
48	Sequential Oneâ€Pot Addition of Excess Arylâ€Grignard Reagents and Electrophiles to <i>O</i> â€Alkyl Thioformates. Chemistry - A European Journal, 2013, 19, 13112-13119.	3.3	13
49	Diastereo―and Regioselective Addition of Thioamide Dianions to Imines and Aziridines: Synthesis of <i>Nâ€</i> Thioacylâ€1,2â€diamines and <i>Nâ€</i> Thioacylâ€1,3â€diamines. Chemistry - A European Journal, 2 304-313.	01 3, 319,	19
50	Direct CH Arylation of Heteroarenes Catalyzed by Palladium/ Nitrogenâ€Based Ligand Complexes. Asian Journal of Organic Chemistry, 2013, 2, 624-636.	2.7	88
51	Anti-Markovnikov hydrophosphoroselenoylation of alkenes using phosphorodiselenoic acid esters leading to the formation of phosphonoselenoic acid esters. Chemical Communications, 2013, 49, 9675.	4.1	13
52	Synthesis and Characterization of Boron Complexes of Imidazo[1,5- <i>a</i>]pyridylalkyl Alcohols. Chemistry Letters, 2013, 42, 828-830.	1.3	26
53	Synthesis of γ,δ-Unsaturated Selenoamides via the Seleno-Claisen Rearrangement of in situ Generated Allylic Vinyl Selenides from Selenoamides and Allylic BromidesÂ . Synthesis, 2012, 44, 3197-3201.	2.3	11
54	Thioamides and Thioformamides for Sequential Reactions with Organolithium and Grignard Reagents. Chemistry Letters, 2012, 41, 2-8.	1.3	74

#	Article	IF	CITATIONS
55	Imidazo[1,5-a]pyridine-1-ylalkylalcohols: synthesis via intramolecular cyclization of N-thioacyl 1,2-aminoalcohols and their silyl ethers and molecular structures. Organic and Biomolecular Chemistry, 2012, 10, 4943.	2.8	19
56	One-pot Sequential Direct C–H Bond Arylation of Azoles Catalyzed by [Pd(phen)2](PF6)2: Synthetic Methods for Triarylated Azoles. Journal of Organic Chemistry, 2012, 77, 8815-8820.	3.2	69
57	Generation and characterization of aliphatic selenothioic acid salts. Tetrahedron, 2012, 68, 10489-10495.	1.9	10
58	Palladium-Catalyzed C–H Bond Direct Alkynylation of 5-Membered Heteroarenes: A Well-Defined Synthetic Route to Azole Derivatives Containing Two Different Alkynyl Groups. Journal of Organic Chemistry, 2012, 77, 5381-5388.	3.2	78
59	Intramolecular Cyclization of in Situ Generated Adducts Formed between Thioamide Dianions and Thioformamides Leading to Generation of 5-Amino-2-thiazolines and 5-Aminothiazoles, and Their Fluorescence Properties. Organic Letters, 2011, 13, 1718-1721.	4.6	56
60	Direct Arylation of Simple Azoles Catalyzed by 1,10-Phenanthroline Containing Palladium Complexes: An Investigation of C4 Arylation of Azoles and the Synthesis of Triarylated Azoles by Sequential Arylation. Journal of Organic Chemistry, 2011, 76, 2680-2693.	3.2	122
61	1-Alkynyl- and 1-Alkenyl-3-arylimidazo[1,5- <i>a</i>]pyridines: Synthesis, Photophysical Properties, and Observation of a Linear Correlation between the Fluorescent Wavelength and Hammett Substituent Constants. Journal of Organic Chemistry, 2011, 76, 6146-6158.	3.2	70
62	Direct Sequential C3 and C1 Arylation Reaction of Imidazo[1,5- <i>a</i>]pyridine Catalyzed by a 1,10-Phenanthroline–Palladium Complex. Chemistry Letters, 2011, 40, 939-940.	1.3	47
63	Sequential One-pot Reactions of Thioformates with Lithium Silylacetylides, Arylmagnesium Halides, and Electrophiles Leading to Formation of Propargyl Sulfides. Chemistry Letters, 2011, 40, 70-71.	1.3	11
64	Phosphorofluoridic acid ammonium salts and acids: Synthesis, NMR properties, and application as acid catalysts. Heteroatom Chemistry, 2011, 22, 417-425.	0.7	9
65	Sequential One-Pot Reactions of Thioformamides with Organolithium and Zinc Reagents. Phosphorus, Sulfur and Silicon and the Related Elements, 2011, 186, 1094-1103.	1.6	4
66	Synthesis and Properties of Secondary Thiocarbamoylsilanes. Bulletin of the Chemical Society of Japan, 2010, 83, 52-57.	3.2	8
67	Synthesis and Properties of Phosphoroselenoic Acids and Their salts Bearing Binaphthyl Groups. Phosphorus, Sulfur and Silicon and the Related Elements, 2010, 185, 964-973.	1.6	17
68	Thioamide dianions derived from N-arylmethyl thioamides: Generation and application as carbon nucleophiles adjacent to the nitrogen atom. Pure and Applied Chemistry, 2010, 82, 541-554.	1.9	29
69	(Selenocarbamoyl)silanes and -germanes: Their Synthesis Using (Selenocarbamoyl)lithium and Characterization. Organometallics, 2010, 29, 2400-2402.	2.3	14
70	Direct multiple C–H bond arylation reaction of heteroarenes catalyzed by cationic palladium complex bearing 1,10-phenanthroline. Chemical Communications, 2010, 46, 2471.	4.1	190
71	Syntheses and Stability of Alkynyl <i>S,N</i> -Acetals Derived from 2-Propynals. Phosphorus, Sulfur and Silicon and the Related Elements, 2009, 184, 1462-1480.	1.6	2
72	Silylation and alkylation of thioamide dianions of <i>N</i> -arylmethyl secondary thioamides, and reduction of the resulting thioamides leading to secondary and primary amines. Journal of Sulfur Chemistry, 2009, 30, 225-235.	2.0	7

#	Article	IF	CITATIONS
73	Syntheses and fluorideâ€ionâ€mediated hydrolysis of phosphoroselenoic acid ester and amides. Heteroatom Chemistry, 2009, 20, 255-261.	0.7	26
74	Synthesis of 1,3-diarylated imidazo[1,5-a]pyridines with a combinatorial approach: metal-catalyzed cross-coupling reactions of 1-halo-3-arylimidazo[1,5-a]pyridines with arylmetal reagents. Tetrahedron, 2009, 65, 5062-5073.	1.9	79
75	Sequential Addition Reactions of Two Molecules of Grignard Reagents to Thioformamides. Journal of Organic Chemistry, 2009, 74, 5703-5706.	3.2	30
76	lodine-mediated cyclization of N-thioacyl-1-(2-pyridyl)-1,2-aminoalcohols and their subsequent condensation leading to the formation of novel bis(1-imidazo[1,5-a]pyridyl)arylmethanes. Chemical Communications, 2009, , 7009.	4.1	27
77	Synthesis of Fluorescent 1,3-Diarylated Imidazo[1,5- <i>a</i>]pyridines: Oxidative Condensationâ^'Cyclization of Aryl-2-Pyridylmethylamines and Aldehydes with Elemental Sulfur as an Oxidant. Journal of Organic Chemistry, 2009, 74, 3566-3568.	3.2	117
78	Direct Thionation and Selenation of Amides Using Elemental Sulfur and Selenium and Hydrochlorosilanes in the Presence of Amines. Organic Letters, 2009, 11, 3064-3067.	4.6	76
79	Diastereoselective Synthesis of <i>N</i> -Secondary Alkyl 2-Alkoxymethylpyrrolidines via Sequential Addition Reactions of Organolithium and -Magnesium Reagents to <i>N</i> -Thioformyl 2-Alkoxymethylpyrrolidines. Journal of Organic Chemistry, 2008, 73, 9518-9521.	3.2	31
80	Phosphoroselenoic Acid Derivatives Bearing a Binaphthyl Group as a Chiral Molecular Tool. Phosphorus, Sulfur and Silicon and the Related Elements, 2008, 183, 889-896.	1.6	8
81	Copper-catalyzed Oxidative Desulfurization-promoted Intramolecular Cyclization of Thioamides Using Molecular Oxygen as an Oxidant: An Efficient Route to Five- to Seven-membered Nitrogen-containing Heterocycles. Chemistry Letters, 2008, 37, 646-647.	1.3	25
82	Fluoride-ion-mediated Hydrolysis of Phosphoric Acid Esters, Amides, and Phosphorous Acid Esters Leading to Phosphorofluoridic, Phosphoramide Fluoridic, and Phosphonic Acid Monoester Salts. Chemistry Letters, 2008, 37, 1198-1199.	1.3	16
83	Sequential Addition Reactions of Lithium Acetylides and Grignard Reagents to Selenoiminium Salts Leading to 2-Propynyl Tertiary Amines Bearing a Tetrasubstituted Carbon Center. Bulletin of the Chemical Society of Japan, 2007, 80, 2220-2225.	3.2	17
84	Synthesis of 1,1′-Binaphthyl-2,2′-diyl Phosphoroselenoic Ammonium Salts and Their Conversion to Optically Active Dialkyl Diselenides. Chemistry Letters, 2007, 36, 852-853.	1.3	15
85	Copper-catalyzed oxidative desulfurization–oxygenation of thiocarbonyl compounds using molecular oxygen: an efficient method for the preparation of oxygen isotopically labeled carbonyl compounds. Chemical Communications, 2007, , 2354-2356.	4.1	39
86	Three-Component Coupling Reactions of Thioformamides with Organolithium and Grignard Reagents Leading to Formation of Tertiary Amines and a Thiolating Agent. Journal of the American Chemical Society, 2007, 129, 780-781.	13.7	100
87	Synthesis and Properties of 1-Methylthiopropargylammonium Salts and Their Use as Key Precursors to Sulfur-Containing Enediynes. Organic Letters, 2007, 9, 5295-5298.	4.6	15
88	Telluration of seleno- and chloroiminium salts leading to various telluroamides, and their structure and NMR properties. Journal of Organometallic Chemistry, 2007, 692, 129-135.	1.8	16
89	Synthesis of 2-Azaindolizines by Using an Iodine-Mediated Oxidative Desulfurization Promoted Cyclization ofN-2-Pyridylmethyl Thioamides and an Investigation of Their Photophysical Properties. Organic Letters, 2006, 8, 5621-5624.	4.6	115
90	1,1â€~-Binaphthyl-2,2â€~-diyl Phosphoroselenoyl Chloride as a Chiral Molecular Tool for the Preparation of Enantiomerically Pure Alcohols and Amines. Journal of the American Chemical Society, 2006, 128, 4584-4585.	13.7	34

#	Article	IF	CITATIONS
91	Synthesis of 1,1′-Binaphthyl-2,2′-diyl Phosphoroselenoic Amides and Their Conversion to Optically Pure Phosphoramidites. Chemistry Letters, 2006, 35, 1424-1425.	1.3	23
92	Sequential addition reaction of lithium acetylides and Grignard reagents to thioiminium salts from thiolactams leading to 2,2-disubstituted cyclic amines. Tetrahedron, 2006, 62, 6312-6320.	1.9	42
93	Syntheses and Properties of Phosphinoselenoic Chlorides, Acids, and Their Salts. Current Organic Chemistry, 2006, 10, 1963-1973.	1.6	17
94	Addition reaction of zinc acetylides to thioiminium salts leading to 3-amino-1-sulfenyl-1,4-enynes. Tetrahedron Letters, 2005, 46, 3637-3640.	1.4	15
95	Selenophilic reaction of organolithium and magnesium reagents with phosphinoselenoic chlorides. Heteroatom Chemistry, 2005, 16, 185-191.	0.7	19
96	Optically active P-chiral phosphinoselenoic amides: stereochemical outcome at the P-stereogenic center in the synthesis of these substances and their characterization. Tetrahedron: Asymmetry, 2005, 16, 3703-3710.	1.8	17
97	Synthesis and Reactions of Selenothioic Acid S-Esters and Diselenoic Acid Esters. Synlett, 2005, 2005, 1509-1520.	1.8	10
98	Phosphinoselenothioic Acids and Their Salts:Â Synthesis, Characterization, and Reaction with Electrophiles. Journal of Organic Chemistry, 2005, 70, 5611-5617.	3.2	28
99	P-Chiral Phosphinoselenoic Chlorides and Phosphinochalcogenoselenoic Acid Esters:Â Synthesis, Characterization, and Conformational Studies. Journal of Organic Chemistry, 2005, 70, 952-959.	3.2	45
100	Enantiomerically pure P-chiral phosphinoselenoic chlorides: inversion of configuration at the P-chirogenic center in the synthesis and reaction of these substances. Chemical Communications, 2005, , 4077.	4.1	21
101	N-Thioacyl 1,3-Amino Alcohols:Â Synthesis via Ring-Opening of Oxiranes with Thioamide Dianions and Applications as Key Intermediates Leading to Stereochemically Defined 5,6-Dihydro-4H-1,3-oxazines and 1,3-Amino Alcohols. Journal of Organic Chemistry, 2005, 70, 8148-8153.	3.2	45
102	Reaction of an ammonium eneselenolate derived from a selenothioacetic acidS-ester with electron-deficient alkenes and alkynes. Heteroatom Chemistry, 2004, 15, 187-192.	0.7	3
103	Synthesis of Tertiary Propargylamines by Sequential Reactions of in Situ Generated Thioiminium Salts with Organolithium and -magnesium Reagents. Journal of the American Chemical Society, 2004, 126, 5968-5969.	13.7	190
104	Synthesis and Properties of Selenoiminium Salts Derived from Secondary Selenoamides. Organometallics, 2004, 23, 3907-3913.	2.3	15
105	P-Chiral Phosphinoselenoic Chlorides and Optically ActiveP-Chiral Phosphinoselenoic Amides: Synthesis and Stereospecific Interconversion with Extrusion and Addition Reactions of the Selenium Atom. Chemistry Letters, 2004, 33, 878-879.	1.3	26
106	lodo-cyclization ofN-Homoallyl Thioamides Leading to 2,4-Diaryl-5,6-dihydro-4H-1,3-thiazines. Chemistry Letters, 2004, 33, 508-509.	1.3	31
107	Acyclic Selenoiminium Salts:  Isolation, First Structural Characterization, and Reactions. Organic Letters, 2003, 5, 1361-1364.	4.6	38
108	Highly Efficient Peterson Olefination Leading to Unsaturated Selenoamides and Their Characterizationâ€. Journal of Organic Chemistry, 2003, 68, 7979-7982.	3.2	37

#	Article	IF	CITATIONS
109	Reaction and Characterization of Thioamide Dianions Derived fromN-Benzyl Thioamides. Journal of Organic Chemistry, 2003, 68, 8514-8519.	3.2	25
110	Selenothiophosphinic Acid Salts: Efficient Synthesis, Structure and Reactivity. Chemistry Letters, 2002, 31, 914-915.	1.3	17
111	Generation and Reactions of a Selenoamide Dianion. Organic Letters, 2002, 4, 1407-1409.	4.6	34
112	Synthesis and Structure of Group 14 Element Derivatives of Carbotelluroates. Organometallics, 2002, 21, 1487-1492.	2.3	15
113	The First Ammonium Aromatic Diselenoates:Â Stable Heavy Congeners of Aromatic Carboxylic Acid Salts. Journal of the American Chemical Society, 2002, 124, 5960-5961.	13.7	27
114	Aldol-type condensation reactions of lithium eneselenolates generated from selenoamides with aldehydes. Journal of the Chemical Society, Perkin Transactions 1, 2001, , 2711-2716.	1.3	14
115	Reactions of Lithium Eneselenolates of Selenoamides with Carbonyl Compounds. Phosphorus, Sulfur and Silicon and the Related Elements, 2001, 172, 101-109.	1.6	1
116	Ammonium Eneselenolates: Stereochemical and Spectroscopic Properties. Phosphorus, Sulfur and Silicon and the Related Elements, 2001, 172, 111-118.	1.6	3
117	Ammonium Eneselenolates:Â Stereochemistry and Electronic Properties. Journal of Organic Chemistry, 2001, 66, 8101-8105.	3.2	14
118	MeOTf-Mediated Alkynylation of Selenoamides Leading to β-Methylselenenyl α,β-Unsaturated Ketones and Their Characterization. Organic Letters, 2001, 3, 1993-1995.	4.6	24
119	The First Alkali Metal Selenothioates: Synthesis and Molecular Structure. Chemistry Letters, 2001, 30, 968-969.	1.3	5
120	Highly Efficient Generation of Ammonium Eneselenolates, Their Reactions and Electronic Properties. Chemistry Letters, 2000, 29, 368-369.	1.3	10
121	Reactions of selenothioic acid S-esters with trivalent phosphorus compounds: new synthetic methods for α-phosphoryl alkyl sulfides and alkyl selenides. Journal of the Chemical Society, Perkin Transactions 1, 2000, , 917-924.	1.3	7
122	Michael Addition of Selenoamides to α,β-Unsaturated Carbonyl Compounds:  Stereocontrolled Synthesis of δ-Oxo Selenoamides and Their Reactivity. Organic Letters, 2000, 2, 311-313.	4.6	23
123	The First Example of Ammonium Selenothioates:Â Isolation and Characterization. Journal of the American Chemical Society, 2000, 122, 9850-9851.	13.7	23
124	Aldol-Type Condensation Reactions of Selenothioacetic AcidS-Butyl Ester Leading to β-Hydroxy Selenothioic AcidS-Esters and Ketene Selenothioacetals. Journal of Organic Chemistry, 1999, 64, 2130-2133.	3.2	28
125	Structure of N-Aryl Selenoacetamides in Solutions and in the Solid State. Journal of Organic Chemistry, 1998, 63, 374-376.	3.2	16
126	Synthesis and Structure ofN-(Silylalkyl)amides:Â Rhodium-Catalyzed Hydrosilylation of Enamides. Organometallics, 1998, 17, 926-932.	2.3	26

#	Article	IF	CITATIONS
127	Syntheses of Selenothioic and Diselenoic Acid Esters. Sulfur Reports, 1998, 20, 397-418.	0.4	6
128	Selenothioic AcidS-Esters:Â Synthesis, Characterization, and Trend for Stability. Journal of the American Chemical Society, 1997, 119, 8592-8597.	13.7	42
129	4-Penteneselenothioic acid S-alkyl esters: Synthesis via the seleno-Claisen rearrangement. Tetrahedron, 1997, 53, 12237-12247.	1.9	15
130	Selenothioic Acid S-Esters, Diselenoic Acid Esters:Synthesis, Stability, and Reactivity Yuki Gosei Kagaku Kyokaishi/Journal of Synthetic Organic Chemistry, 1997, 55, 1092-1100.	0.1	3
131	Selenotellurocarbamic Acid Te-Alkyl Esters:  First Isolation and Characterization. Organometallics, 1996, 15, 5753-5755.	2.3	12
132	Thion (RCSOH), Selenon (RCSeOH), and Telluron (RCTeOH) Acids as Predominant Species. Journal of the American Chemical Society, 1996, 118, 1262-1267.	13.7	62
133	Stereoselective generation and trapping of lithium eneselenolates leading to ketene selenothioacetals and selenothioesters. Tetrahedron, 1996, 52, 2839-2846.	1.9	26
134	Selective Allylations of Selenothioic AcidS-Alkyl Esters with Allylic Bromides. Chemistry Letters, 1995, 24, 1057-1058.	1.3	12
135	Synthesis of Rubidium and Cesium Tellurocarboxylates and an X-Ray Structural Analysis of Heavy Alkali Metal Monochalcogenocarboxylates. Bulletin of the Chemical Society of Japan, 1995, 68, 3507-3517.	3.2	25
136	A Facile Preparation of Cesium Tellurocarboxylates. The First X-Ray Structural Analysis of a Tellurocarboxylic Acid Alkali Metal Salt. Chemistry Letters, 1995, 24, 87-88.	1.3	6
137	Synthesis and reaction of selenocarbamic acid sodium and potassium salts and organo-germanium, -tin, and -lead esters. Heteroatom Chemistry, 1995, 6, 215-221.	0.7	34
138	Reactions of diselenoic acid esters with amines and X-ray crystal structure analyses of aromatic selenoamides. Heteroatom Chemistry, 1995, 6, 241-246.	0.7	20
139	Dialkynyl selenides: Synthesis,13C NMR spectra, and molecular orbital calculations. Heteroatom Chemistry, 1994, 5, 31-35.	0.7	7
140	Tautomeric Equilibrium between Selenol and Selenoxo Forms of Selenocarboxylic Acids. Journal of the American Chemical Society, 1994, 116, 2195-2196.	13.7	33
141	Selenonthiol esters: isolation and characterization. Journal of the American Chemical Society, 1993, 115, 3000-3001.	13.7	51
142	A Facile Preparation of <i>N,N</i> -Disilylbenzylamines from Benzylic Chlorides Using Agl/LiN(SiMe ₃) ₂ System. Synthetic Communications, 1993, 23, 7-14.	2.1	1
143	One-Pot Synthesis of Selenothioic AcidS-Alkyl Esters by the Reaction of Lithium Alkyneselenolates with Thiols. Chemistry Letters, 1993, 22, 1469-1472.	1.3	19
144	Tellurium Amides as a New Tellurating Agent. Phosphorus, Sulfur and Silicon and the Related Elements, 1992, 67, 239-242.	1.6	7

#	Article	IF	CITATIONS
145	Triorganogermanium Selenocarboxylates: Synthesis and Reactions. Zeitschrift Fur Naturforschung - Section B Journal of Chemical Sciences, 1992, 47, 558-562.	0.7	18
146	Synthesis and Characterization of <i>O</i> â€Triorganosilyl Selenocarboxylates. Chemische Berichte, 1992, 125, 417-422.	0.2	27
147	Crystalline Sodium Selenocarboxylates - synthesis and characterization. Journal Für Praktische Chemie, 1990, 332, 898-910.	0.2	26
148	New Thioacylating Reagents: 1â€Methylâ€2â€ŧhioacylthioâ€pyridinium Salts. Zeitschrift Für Chemie, 1990, 30, 67-69.	0.0	18
149	A Convenient Preparation of Bis(phosphorothioyl) Sulfides. Zeitschrift Fur Naturforschung - Section B Journal of Chemical Sciences, 1989, 44, 153-157.	0.7	5
150	Aliphatic Bis(acyl) Selenides — Synthesis and Characterization. Zeitschrift Fur Naturforschung - Section B Journal of Chemical Sciences, 1989, 44, 1050-1052.	0.7	7
151	Isolation of Crystalline Potassium Alkanecarboselenoates. Zeitschrift Fur Naturforschung - Section B Journal of Chemical Sciences, 1989, 44, 1519-1523.	0.7	12
152	SELENIUM AND TELLURIUM ISOLOGUES OF CARBOXYLIC ACID DERIVATIVES. Organic Preparations and Procedures International, 1986, 18, 369-427.	1.3	57
153	Preparation of Haloselenium and Halotellurium Trithiocarbonates. Zeitschrift Fur Naturforschung - Section B Journal of Chemical Sciences, 1985, 40, 273-276.	0.7	4
154	Preparation and Some Reactions of Selenium and Tellurium Bis(dithiocarboxylates). Chemische Berichte, 1985, 118, 1696-1708.	0.2	7
155	Thio-, Seleno-, Telluro-Amides. Topics in Current Chemistry, 0, , 247-272.	4.0	30