
## Anand K Ganesan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9548443/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                            | IF   | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Spatial transcriptomics using combinatorial fluorescence spectral and lifetime encoding, imaging and analysis. Nature Communications, 2022, 13, 169.                                                               | 12.8 | 31        |
| 2  | Structure-based design of CDC42 effector interaction inhibitors for the treatment of cancer. Cell Reports, 2022, 39, 110641.                                                                                       | 6.4  | 5         |
| 3  | Multimodal analyses of vitiligo skin identifies tissue characteristics of stable disease. JCI Insight, 2022,<br>7, .                                                                                               | 5.0  | 17        |
| 4  | Alchemical Free Energy Calculations to Investigate Protein–Protein Interactions: the Case of the CDC42/PAK1 Complex. Journal of Chemical Information and Modeling, 2022, 62, 3023-3033.                            | 5.4  | 8         |
| 5  | Delineating the role of <i>MITF</i> isoforms in pigmentation and tissue homeostasis. Pigment Cell and Melanoma Research, 2020, 33, 279-292.                                                                        | 3.3  | 17        |
| 6  | Realâ€world experience of dupilumab treatment for atopic dermatitis in adults: a retrospective analysis of patients' records. International Journal of Dermatology, 2020, 59, 253-256.                             | 1.0  | 62        |
| 7  | Fast, large area multiphoton exoscope (FLAME) for macroscopic imaging with microscopic resolution of human skin. Scientific Reports, 2020, 10, 18093.                                                              | 3.3  | 26        |
| 8  | Transcriptomic and proteomic signatures of stemness and differentiation in the colon crypt.<br>Communications Biology, 2020, 3, 453.                                                                               | 4.4  | 37        |
| 9  | Nonâ€invasive optical biopsy by multiphoton microscopy identifies the live morphology of common melanocytic nevi. Pigment Cell and Melanoma Research, 2020, 33, 869-877.                                           | 3.3  | 11        |
| 10 | Gene mutations distinguishing gastric from colorectal and esophageal adenocarcinomas. Journal of<br>Gastrointestinal Oncology, 2020, 11, 45-54.                                                                    | 1.4  | 2         |
| 11 | Dynamics of nevus development implicate cell cooperation in the growth arrest of transformed melanocytes. ELife, 2020, 9, .                                                                                        | 6.0  | 22        |
| 12 | In vivo multiphoton microscopy of melasma. Pigment Cell and Melanoma Research, 2019, 32, 403-411.                                                                                                                  | 3.3  | 31        |
| 13 | PIKfyve regulates melanosome biogenesis. PLoS Genetics, 2018, 14, e1007290.                                                                                                                                        | 3.5  | 14        |
| 14 | ATR Mutations Promote the Growth of Melanoma Tumors by Modulating the Immune Microenvironment. Cell Reports, 2017, 18, 2331-2342.                                                                                  | 6.4  | 30        |
| 15 | Pharmacophore Identification and Scaffold Exploration to Discover Novel, Potent, and Chemically<br>Stable Inhibitors of Acid Ceramidase in Melanoma Cells. Journal of Medicinal Chemistry, 2017, 60,<br>5800-5815. | 6.4  | 15        |
| 16 | Complete Acid Ceramidase ablation prevents cancer-initiating cell formation in melanoma cells.<br>Scientific Reports, 2017, 7, 7411.                                                                               | 3.3  | 49        |
| 17 | The RhoJ-BAD signaling network: An Achilles' heel for BRAF mutant melanomas. PLoS Genetics, 2017, 13,<br>e1006913.                                                                                                 | 3.5  | 20        |
| 18 | Pigment Production Analysis in Human Melanoma Cells. Methods in Molecular Biology, 2016, , 1.                                                                                                                      | 0.9  | 2         |

ANAND K GANESAN

| #  | Article                                                                                                                                                                                                       | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Tyrosinase Depletion Prevents the Maturation of Melanosomes in the Mouse Hair Follicle. PLoS ONE, 2015, 10, e0143702.                                                                                         | 2.5 | 35        |
| 20 | <scp>R</scp> ho <scp>J</scp> modulates melanoma invasion by altering actin cytoskeletal dynamics.<br>Pigment Cell and Melanoma Research, 2013, 26, 218-225.                                                   | 3.3 | 25        |
| 21 | 9â€ <i>cis</i> retinoic acid is the <scp>ALDH</scp> 1 <scp>A</scp> 1 product that stimulates melanogenesis. Experimental Dermatology, 2013, 22, 202-209.                                                      | 2.9 | 27        |
| 22 | RhoJ Regulates Melanoma Chemoresistance by Suppressing Pathways That Sense DNA Damage. Cancer<br>Research, 2012, 72, 5516-5528.                                                                               | 0.9 | 53        |
| 23 | The pleiotropic roles of autophagy regulators in melanogenesis. Pigment Cell and Melanoma Research, 2011, 24, 595-604.                                                                                        | 3.3 | 74        |
| 24 | WIPI1 Coordinates Melanogenic Gene Transcription and Melanosome Formation via TORC1 Inhibition.<br>Journal of Biological Chemistry, 2011, 286, 12509-12523.                                                   | 3.4 | 72        |
| 25 | Protein interaction network topology uncovers melanogenesis regulatory network components within functional genomics datasets. BMC Systems Biology, 2010, 4, 84.                                              | 3.0 | 32        |
| 26 | Systems-level cancer gene identification from protein interaction network topology applied to<br>melanogenesis-related functional genomics data. Journal of the Royal Society Interface, 2010, 7,<br>423-437. | 3.4 | 95        |
| 27 | Harnessing RNAi-Based Functional Genomics to Unravel the Molecular Complexity Underlying Skin<br>Pigment Variation. , 2010, , 227-253.                                                                        |     | 0         |
| 28 | Genome-Wide siRNA-Based Functional Genomics of Pigmentation Identifies Novel Genes and Pathways<br>That Impact Melanogenesis in Human Cells. PLoS Genetics, 2008, 4, e1000298.                                | 3.5 | 129       |
| 29 | Broad spectrum identification of SUMO substrates in melanoma cells. Proteomics, 2007, 7, 2216-2221.                                                                                                           | 2.2 | 33        |