Zhiyuan Cong

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9547655/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Achieving Efficient Polymer Solar Cells Based on Near-Infrared Absorptive Backbone Twisted Nonfullerene Acceptors through a Synergistic Strategy of an Indacenodiselenophene Fused-Ring Core and a Chlorinated Terminal Group. ACS Applied Energy Materials, 2022, 5, 1322-1330.	2.5	6
2	Performances of two side-chain modified medium-bandgap alternating polymers with main-chain twisted non-fullerene acceptor. Synthetic Metals, 2022, 286, 117038.	2.1	0
3	Enhancing the organic solar cells performances by elevating cesium carboxylate content of graphene oxide based cathode interface layer. Surfaces and Interfaces, 2022, 31, 102068.	1.5	1
4	Efficient and Stable Nonfullerene Polymer Solar Cell Enabled by a Narrow-Bandgap, Nonplanar, Small-Molecule Acceptor with an Extended Main Chain. ACS Applied Energy Materials, 2021, 4, 4119-4128.	2.5	5
5	Efficient Organic Solar Cells Enabled by Chlorinated Nonplanar Small Molecules. ACS Applied Energy Materials, 2021, 4, 12974-12981.	2.5	7
6	Effects of Monofluorinated Positions at the End-Capping Groups on the Performances of Twisted Non-Fullerene Acceptor-Based Polymer Solar Cells. ACS Applied Materials & Interfaces, 2020, 12, 789-797.	4.0	24
7	Efficient polymer solar cells enabled by alkoxy-phenyl side-chain-modified main-chain-twisted small molecular acceptors. Journal of Materials Chemistry A, 2020, 8, 22335-22345.	5.2	11
8	Effects of the Isomerized Thiophene-Fused Ending Groups on the Performances of Twisted Non-Fullerene Acceptor-Based Polymer Solar Cells. ACS Applied Materials & Interfaces, 2020, 12, 23904-23913.	4.0	22
9	A wide-bandgap nonplanar small molecule acceptor having indenofluorene core for non-fullerene polymer solar cells. Dyes and Pigments, 2020, 180, 108409.	2.0	8
10	Influences of the terminal groups on the performances of asymmetric small molecule acceptors-based polymer solar cells. Dyes and Pigments, 2020, 178, 108388.	2.0	7
11	Efficient non-fullerene polymer solar cells enabled by side-chain conjugated thieno[3,4-c]pyrrole-4,6-dione-based polymer and small molecular acceptors. Reactive and Functional Polymers, 2019, 145, 104378.	2.0	3
12	Efficient Polymer Solar Cells Having High Open-Circuit Voltage and Low Energy Loss Enabled by a Main-Chain Twisted Small Molecular Acceptor. ACS Applied Materials & Interfaces, 2019, 11, 16795-16803.	4.0	26
13	High lying energy of charge-transfer states and small energetic offsets enabled by fluorinated quinoxaline-based alternating polymer and alkyl-thienyl side-chain modified non-fullerene acceptor. Organic Electronics, 2019, 66, 63-69.	1.4	4
14	High-Performance Fullerene-Free Polymer Solar Cells Featuring Efficient Photocurrent Generation from Dual Pathways and Low Nonradiative Recombination Loss. ACS Energy Letters, 2019, 4, 8-16.	8.8	62
15	Effects of solvent vapour annealing on the performances of benzo[1,2-b:4,5-bâ€2]dithiophene and 4,7-di(4-hexyl-thiophen-2-yl)-5,6-difluorine-2,1,3-benzothiadiazole-based alternating polymer solar cells with different configurations. Dyes and Pigments, 2019, 161, 58-65.	2.0	11
16	Absorptive Behaviors and Photovoltaic Performance Enhancements of Alkoxy-Phenyl Modified Indacenodithieno[3,2- <i>b</i>]thiophene-Based Nonfullerene Acceptors. ACS Sustainable Chemistry and Engineering, 2018, 6, 2177-2187.	3.2	30
17	Nonfullerene Polymer Solar Cells Based on a Main-Chain Twisted Low-Bandgap Acceptor with Power Conversion Efficiency of 13.2%. ACS Energy Letters, 2018, 3, 1499-1507.	8.8	113
18	Alternating polymers based on fluorinated alkoxyphenyl-substituted benzo[1,2-b:4,5-b′]dithiophene and isoindigo derivatives for polymer solar cells. Dyes and Pigments, 2017, 146, 529-536.	2.0	11

ZHIYUAN CONG

#	Article	IF	CITATIONS
19	High performance alternating polymers based on two-dimensional conjugated benzo[1,2-b:4,5-bâ€2]dithiophene and fluorinated dithienylbenzothiadiazole for solar cells. RSC Advances, 2016, 6, 77525-77534.	1.7	9
20	Synthesis of copolymers based on benzo[1,2-b:4,5-bâ€2]difuran and fluorinated quinoxaline derivatives and their photovoltaic properties. Polymer, 2015, 67, 55-62.	1.8	14
21	Synthesis and photovoltaic properties of an alternating polymer based on benzo[1,2-b:4,5-bâ€2]dithiophene and fluorine substituted 4,7-dithiophene-2-yl-2,1,3-benzothiadiazole. Synthetic Metals, 2014, 192, 82-86.	2.1	3
22	The Effect of Additive on the Performance and Phase Separation of Benzo[1,2â€ <i>b</i> :3,4â€ <i>b</i> @2]dithiopheneâ€Based Polymer Heterojunction Photovoltaic Devices. Macromolecular Chemistry and Physics, 2013, 214, 985-993.	1.1	2
23	Synthesis and photovoltaic properties of an alternating polymer based fluorene and fluorine substituted quinoxaline derivatives. Reactive and Functional Polymers, 2013, 73, 1432-1438.	2.0	11
24	Highly Efficient Solar Cells Based on the Copolymer of Benzodithiophene and Thienopyrroledione with Solvent Annealing. Journal of Physical Chemistry C, 2013, 117, 3272-3278.	1.5	24
25	Synthesis of a terpolymer containing fluorene, side chain conjugated thiophene and benzothiadiazole and its applications in photovoltaic devices. Journal of Applied Polymer Science, 2013, 128, 3250-3255.	1.3	8
26	A copolymer based on benzo[1,2-b:4,5-b′]dithiophene and quinoxaline derivative for photovoltaic application. Reactive and Functional Polymers, 2012, 72, 897-903.	2.0	20
27	Synthesis of two benzo[1,2-b:3,4-b′]dithiophene-based conjugated polymers with different side chains and their applications in photovoltaic devices. Synthetic Metals, 2012, 162, 2020-2026.	2.1	12
28	Enhanced open-circuit voltage of two side chain conjugated polythiophene derivatives blended with indene-C60 bisadduct. Reactive and Functional Polymers, 2012, 72, 122-126.	2.0	6
29	Solution Structure of a Photo-Switchable Insect Kinin Thioxo-Analog. Protein and Peptide Letters, 2010, 17, 343-346.	0.4	5
30	A photoswitchable thioxopeptide bond facilitates the conformationâ€activity correlation study of insect kinin. Journal of Peptide Science, 2008, 14, 1062-1068.	0.8	33