
Chao Zhou

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9547443/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Siteâ€Selective <i>N</i> â€1 and Câ€3 Heteroarylation of Indole with Heteroarylnitriles by Organocatalysis under Visible Light. Angewandte Chemie - International Edition, 2022, 61, .	13.8	11
2	Siteâ€Selective <i>N</i> â€1 and Câ€3 Heteroarylation of Indole with Heteroarylnitriles by Organocatalysis under Visible Light. Angewandte Chemie, 2022, 134, .	2.0	2
3	Photothermalâ€Assisted Photocatalytic Nitrogen Oxidation to Nitric Acid on Palladiumâ€Đecorated Titanium Oxide. Advanced Energy Materials, 2022, 12, .	19.5	34
4	Layered Double Hydroxide Engineering for the Photocatalytic Conversion of Inactive Carbon and Nitrogen Molecules. ACS ES&T Engineering, 2022, 2, 1088-1102.	7.6	12
5	Poly(ethylene oxide) Is Positively Charged in Aqueous Solutions. Gels, 2022, 8, 213.	4.5	6
6	Interfacial wettability and mass transfer characterizations for gas–liquid–solid tripleâ€phase catalysis. Exploration, 2022, 2, .	11.0	21
7	Subâ€3 nm Ultrafine Cu ₂ O for Visible Light Driven Nitrogen Fixation. Angewandte Chemie - International Edition, 2021, 60, 2554-2560.	13.8	134
8	Subâ€3 nm Ultrafine Cu 2 O for Visible Light Driven Nitrogen Fixation. Angewandte Chemie, 2021, 133, 2584-2590.	2.0	13
9	Effect of Counterion Binding to Swelling of Polyelectrolyte Brushes. Langmuir, 2021, 37, 5554-5562.	3.5	7
10	Revealing Ammonia Quantification Minefield in Photo/Electrocatalysis. Angewandte Chemie - International Edition, 2021, 60, 21728-21731.	13.8	63
11	Revealing Ammonia Quantification Minefield in Photo/Electrocatalysis. Angewandte Chemie, 2021, 133, 21896-21899.	2.0	8
12	Enhancing the Supply of Activated Hydrogen to Promote Photocatalytic Nitrogen Fixation. , 2021, 3, 1521-1527.		35
13	Flux-Assisted Low Temperature Synthesis of SnNb ₂ O ₆ Nanoplates with Enhanced Visible Light Driven Photocatalytic H ₂ -Production. Journal of Physical Chemistry C, 2021, 125, 23219-23225.	3.1	8
14	Direct C–H Thiolation for Selective Cross-Coupling of Arenes with Thiophenols via Aerobic Visible-Light Catalysis. Organic Letters, 2021, 23, 8082-8087.	4.6	21
15	Metal-Free, Redox-Neutral, Site-Selective Access to Heteroarylamine via Direct Radical–Radical Cross-Coupling Powered by Visible Light Photocatalysis. Journal of the American Chemical Society, 2020, 142, 16805-16813.	13.7	84
16	Visible Light-Catalyzed Benzylic C–H Bond Chlorination by a Combination of Organic Dye (Acr ⁺ -Mes) and <i>N</i> -Chlorosuccinimide. Journal of Organic Chemistry, 2020, 85, 9080-9087.	3.2	40
17	Efficient wettability-controlled electroreduction of CO2 to CO at Au/C interfaces. Nature Communications, 2020, 11, 3028.	12.8	294
18	How to make use of methanol in green catalytic hydrogen production?. Nano Select, 2020, 1, 12-29.	3.7	60

Снао Zhou

#	Article	IF	CITATIONS
19	Efficient Photocatalytic Nitrogen Fixation over Cu <i>^{lî}</i> ⁺ â€Modified Defective ZnAl‣ayered Double Hydroxide Nanosheets. Advanced Energy Materials, 2020, 10, 1901973.	19.5	173
20	Aggregation-Enabled Intermolecular Photo[2+2]cycloaddition of Aryl Terminal Olefins by Visible-Light Catalysis. CCS Chemistry, 2020, 2, 582-588.	7.8	17
21	Supramolecular precursor strategy for the synthesis of holey graphitic carbon nitride nanotubes with enhanced photocatalytic hydrogen evolution performance. Nano Research, 2019, 12, 2385-2389.	10.4	192
22	Two-dimensional Sn2Ta2O7 nanosheets as efficient visible light-driven photocatalysts for hydrogen evolution. Rare Metals, 2019, 38, 397-403.	7.1	49
23	Construction of Cyclobutanes by Multicomponent Cascade Reactions in Homogeneous Solution through Visibleâ€Light Catalysis. Chemistry - A European Journal, 2019, 25, 879-884.	3.3	13
24	Template-free large-scale synthesis of g-C3N4 microtubes for enhanced visible light-driven photocatalytic H2 production. Nano Research, 2018, 11, 3462-3468.	10.4	199
25	Photo-induced reductive cross-coupling of aldehydes, ketones and imines with electron-deficient arenes to construct aryl substituted alcohols and amines. Chinese Journal of Catalysis, 2018, 39, 487-494.	14.0	23
26	Chemo- and Regioselective Synthesis of Alkynyl Cyclobutanes by Visible Light Photocatalysis. Organic Letters, 2018, 20, 6808-6811.	4.6	8
27	Alkaliâ€Assisted Synthesis of Nitrogen Deficient Graphitic Carbon Nitride with Tunable Band Structures for Efficient Visibleâ€Lightâ€Driven Hydrogen Evolution. Advanced Materials, 2017, 29, 1605148.	21.0	1,616
28	Photocatalysis: Alkaliâ€Assisted Synthesis of Nitrogen Deficient Graphitic Carbon Nitride with Tunable Band Structures for Efficient Visible‣ightâ€Driven Hydrogen Evolution (Adv. Mater. 16/2017). Advanced Materials, 2017, 29, .	21.0	10
29	General and Efficient Intermolecular [2+2] Photodimerization of Chalcones and Cinnamic Acid Derivatives in Solution through Visible‣ight Catalysis. Angewandte Chemie - International Edition, 2017, 56, 15407-15410.	13.8	128
30	General and Efficient Intermolecular [2+2] Photodimerization of Chalcones and Cinnamic Acid Derivatives in Solution through Visible‣ight Catalysis. Angewandte Chemie, 2017, 129, 15609-15612.	2.0	30
31	Effect of Nitrogen Doping Level on the Performance of Nâ€Đoped Carbon Quantum Dot/TiO ₂ Composites for Photocatalytic Hydrogen Evolution. ChemSusChem, 2017, 10, 4650-4656.	6.8	171
32	A Sustainable Strategy for the Synthesis of Pyrochlore H ₄ Nb ₂ O ₇ Hollow Microspheres as Photocatalysts for Overall Water Splitting. ChemPlusChem, 2017, 82, 181-185.	2.8	30
33	CdS Nanoparticleâ€Decorated Cd Nanosheets for Efficient Visible Lightâ€Driven Photocatalytic Hydrogen Evolution. Advanced Energy Materials, 2016, 6, 1501241.	19.5	253
34	Hydrogen Evolution: CdS Nanoparticleâ€Đecorated Cd Nanosheets for Efficient Visible Lightâ€Driven Photocatalytic Hydrogen Evolution (Adv. Energy Mater. 3/2016). Advanced Energy Materials, 2016, 6, .	19.5	3
35	Carbon Nanosheets: Nitrogenâ€Doped Porous Carbon Nanosheets Templated from gâ€C ₃ N ₄ as Metalâ€Free Electrocatalysts for Efficient Oxygen Reduction Reaction (Adv. Mater. 25/2016). Advanced Materials, 2016, 28, 5140-5140.	21.0	44
36	Nitrogenâ€Doped Porous Carbon Nanosheets Templated from g ₃ N ₄ as Metalâ€Free Electrocatalysts for Efficient Oxygen Reduction Reaction. Advanced Materials, 2016, 28, 5080-5086.	21.0	718

Снао Zhou

#	Article	IF	CITATIONS
37	Facile synthesis of ultrathin SnNb ₂ O ₆ nanosheets towards improved visible-light photocatalytic H ₂ -production activity. Chemical Communications, 2016, 52, 8239-8242.	4.1	79
38	Radical Addition of Hydrazones by α-Bromo Ketones To Prepare 1,3,5-Trisubstituted Pyrazoles via Visible Light Catalysis. Journal of Organic Chemistry, 2016, 81, 7127-7133.	3.2	53
39	Photoreduction: Defectâ€Rich Ultrathin ZnAlâ€Layered Double Hydroxide Nanosheets for Efficient Photoreduction of CO ₂ to CO with Water (Adv. Mater. 47/2015). Advanced Materials, 2015, 27, 7823-7823.	21.0	25
40	Defectâ€Rich Ultrathin ZnAl‣ayered Double Hydroxide Nanosheets for Efficient Photoreduction of CO ₂ to CO with Water. Advanced Materials, 2015, 27, 7824-7831.	21.0	608
41	Highly luminescent nitrogen-doped carbon quantum dots as effective fluorescent probes for mercuric and iodide ions. Journal of Materials Chemistry C, 2015, 3, 1922-1928.	5.5	173
42	Carbon quantum dots/TiO2 composites for efficient photocatalytic hydrogen evolution. Journal of Materials Chemistry A, 2014, 2, 3344.	10.3	601
43	Oneâ€Pot Hydrothermal Synthesis and Photocatalytic Hydrogen Evolution of Pyrochlore Type K ₂ Nb ₂ O ₆ . Chinese Journal of Chemistry, 2014, 32, 485-490.	4.9	24
44	Palladium catalysed β-selective oxidative Heck reaction of an electron-rich olefin. Chemical Communications, 2014, 50, 1110-1112.	4.1	31
45	Facile preparation of black Nb ⁴⁺ self-doped K ₄ Nb ₆ O ₁₇ microspheres with high solar absorption and enhanced photocatalytic activity. Chemical Communications, 2014, 50, 9554.	4.1	92
46	Facile synthesis of hierarchical ZnIn2S4 submicrospheres composed of ultrathin mesoporous nanosheets as a highly efficient visible-light-driven photocatalyst for H2 production. Journal of Materials Chemistry A, 2013, 1, 4552.	10.3	166
47	Bubble template synthesis of Sn2Nb2O7 hollow spheres for enhanced visible-light-driven photocatalytic hydrogen production. Chemical Communications, 2013, 49, 9872.	4.1	84
48	Shape-controlled synthesis of polyhedral 50-facet Cu2O microcrystals with high-index facets. CrystEngComm, 2012, 14, 4431.	2.6	70