Igor M Opsenica

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9547237/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Application of Transition Metal atalyzed Decarbonylation of Aldehydes in the Total Synthesis of Natural Products. European Journal of Organic Chemistry, 2022, 2022, .	1.2	5
2	Unraveling the anti-virulence potential and antifungal efficacy of 5-aminotetrazoles using the zebrafish model of disseminated candidiasis. European Journal of Medicinal Chemistry, 2022, 230, 114137.	2.6	4
3	New 4-aminoquinolines as moderate inhibitors of P. falciparum malaria. Journal of the Serbian Chemical Society, 2021, 86, 115-123.	0.4	1
4	Controlling Pd-Catalyzed N-Arylation and Dimroth Rearrangement in the Synthesis of <i>N</i> ,1-Diaryl-1 <i>H</i> -tetrazol-5-amines. Journal of Organic Chemistry, 2021, 86, 4794-4803.	1.7	6
5	Development of an efficient biocatalytic system based on bacterial laccase for the oxidation of selected 1,4-dihydropyridines. Enzyme and Microbial Technology, 2020, 132, 109411.	1.6	18
6	Aminoquinolines afford resistance to cerebral malaria in susceptible mice. Journal of Global Antimicrobial Resistance, 2020, 23, 20-25.	0.9	2
7	Oneâ€Pot Twoâ€Step Synthesis of Isochromeneâ€Fused CF 3 â€Substituted Pyrazoles. European Journal of Organic Chemistry, 2020, 2020, 5616-5619.	1.2	5
8	Bisaurones – enzymatic production and biological evaluation. New Journal of Chemistry, 2020, 44, 9647-9655.	1.4	1
9	Chemo- and biocatalytic esterification of marchantin A and cytotoxic activity of ester derivatives. Fìtoterapìâ, 2020, 142, 104520.	1.1	3
10	Production of bacterial nanocellulose (BNC) and its application as a solid support in transition metal catalysed cross-coupling reactions. International Journal of Biological Macromolecules, 2019, 129, 351-360.	3.6	33
11	Expression and Characterization of a Dye-Decolorizing Peroxidase from Pseudomonas Fluorescens Pf0-1. Catalysts, 2019, 9, 463.	1.6	14
12	Aromatic Guanylhydrazones for the Control of Heme-Induced Antibody Polyreactivity. ACS Omega, 2019, 4, 20450-20458.	1.6	1
13	Palladium-catalyzed N-Arylation of 1-substituted-1H-tetrazol-5-amines. Journal of Organometallic Chemistry, 2019, 880, 134-142.	0.8	5
14	Bis-guanylhydrazones as efficient anti-Candida compounds through DNA interaction. Applied Microbiology and Biotechnology, 2018, 102, 1889-1901.	1.7	13
15	Decarbonylation of Aromatic Aldehydes and Dehalogenation of Aryl Halides Using Maghemite-Supported Palladium Catalyst. Synthesis, 2018, 50, 119-126.	1.2	10
16	Human serum albumin binding of certain antimalarials. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2018, 192, 128-139.	2.0	24
17	Synthesis, cytotoxic activity and DNA-binding properties of copper(II) complexes with terpyridine. Polyhedron, 2018, 139, 313-322.	1.0	26
18	Benzothiazole carbamates and amides as antiproliferative species. European Journal of Medicinal Chemistry, 2018, 157, 1096-1114.	2.6	12

IGOR M OPSENICA

#	Article	IF	CITATIONS
19	Reevaluation of the Palladium/Carbon-Catalyzed Decarbonylation of Aliphatic Aldehydes. Synlett, 2018, 29, 1781-1785.	1.0	8
20	Mononuclear silver(I) complexes with 1,7-phenanthroline as potent inhibitors of Candida growth. European Journal of Medicinal Chemistry, 2018, 156, 760-773.	2.6	36
21	Synthesis, structural characterization and antimicrobial activity of silver(I) complexes with 1-benzyl-1H-tetrazoles. Polyhedron, 2018, 154, 325-333.	1.0	16
22	Consensus-based comparison of chromatographic and computationally estimated lipophilicity of benzothiepino[3,2-c]pyridine derivatives as potential antifungal drugs. Journal of Separation Science, 2017, 40, 2089-2096.	1.3	15
23	Antibacterial and antifungal properties of guanylhydrazones. Journal of the Serbian Chemical Society, 2017, 82, 641-649.	0.4	3
24	Synthesis and antiâ€ <i>Candida</i> activity of novel benzothiepino[3,2]pyridine derivatives. Chemical Biology and Drug Design, 2016, 88, 795-806.	1.5	8
25	Decarbonylative Dibromination of 5-Phenylthiophene-2-carbaldehyde with Bromine. Synthesis, 2016, 48, 4423-4430.	1.2	3
26	Quantitative structure retention/activity relationships of biologically relevant 4-amino-7-chloroquinoline based compounds. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 2016, 1012-1013, 144-152.	1.2	12
27	Synthesis and evaluation of thiophene-based guanylhydrazones (iminoguanidines) efficient against panel of voriconazole-resistant fungal isolates. Bioorganic and Medicinal Chemistry, 2016, 24, 1277-1291.	1.4	34
28	Microwave-assisted synthesis of azepines via nucleophilic aromatic substitution. Journal of the Serbian Chemical Society, 2016, 81, 1225-1230.	0.4	2
29	Investigation into novel thiophene- and furan-based 4-amino-7-chloroquinolines afforded antimalarials that cure mice. Bioorganic and Medicinal Chemistry, 2015, 23, 2176-2186.	1.4	21
30	Synthesis and antimicrobial activity of azepine and thiepine derivatives. Journal of the Serbian Chemical Society, 2015, 80, 839-852.	0.4	9
31	4-Amino-7-chloroquinolines: Probing Ligand Efficiency Provides Botulinum Neurotoxin Serotype A Light Chain Inhibitors with Significant Antiprotozoal Activity. Journal of Medicinal Chemistry, 2013, 56, 5860-5871.	2.9	27
32	Double Palladium-Catalyzed Synthesis of Azepines. Synlett, 2012, 24, 49-52.	1.0	7
33	The synthesis of 2,5-bis(4-amidinophenyl)thiophene derivatives providing submicromolar-range inhibition of the botulinum neurotoxin serotype A metalloprotease. European Journal of Medicinal Chemistry, 2012, 53, 374-379.	2.6	22
34	A Chemotype That Inhibits Three Unrelated Pathogenic Targets: The Botulinum Neurotoxin Serotype A Light Chain,P. falciparumMalaria, and the Ebola Filovirus. Journal of Medicinal Chemistry, 2011, 54, 1157-1169.	2.9	46
35	An alignment independent 3D QSAR study of the antiproliferative activity of 1,2,4,5-tetraoxanes. European Journal of Medicinal Chemistry, 2010, 45, 4570-4577.	2.6	18
36	Chemical Stability of the Peroxide Bond Enables Diversified Synthesis of Potent Tetraoxane Antimalarials. Journal of Medicinal Chemistry, 2008, 51, 2261-2266.	2.9	66

IGOR M OPSENICA

#	Article	IF	CITATION
37	New Chimeric Antimalarials with 4-Aminoquinoline Moiety Linked to a Tetraoxane Skeleton. Journal of Medicinal Chemistry, 2008, 51, 6216-6219.	2.9	65
38	Novel 4-Aminoquinolines Active against Chloroquine-Resistant and Sensitive <i>P. falciparum</i> Strains that also Inhibit Botulinum Serotype A. Journal of Medicinal Chemistry, 2008, 51, 4388-4391.	2.9	52
39	Ribofuranose as a carrier of tetraoxane and 4-aminoquinoline antimalarial pharmacophores. Journal of the Serbian Chemical Society, 2008, 73, 1021-1025.	0.4	2
40	On peroxide antimalarials. Journal of the Serbian Chemical Society, 2007, 72, 1181-1190.	0.4	7
41	Synthesis of novel polar derivatives of the antimalarial endoperoxides ascaridole and dihydroascaridole. Arkivoc, 2007, 2007, 124-135.	0.3	6
42	Tetraoxane Antimalarials and Their Reaction with Fe(II). Journal of Medicinal Chemistry, 2006, 49, 3790-3799.	2.9	52
43	7, 8, 15, 16-Tetraoxa-dispiro [5. 2. 5. 2]hexadecane-3-carboxylic acid derivatives and their antimalarial activity. Journal of the Serbian Chemical Society, 2004, 69, 919-922.	0.4	13