Gunnar Schotta

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9546355/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	HDAC2 Facilitates Pancreatic Cancer Metastasis. Cancer Research, 2022, 82, 695-707.	0.4	19
2	Specific effects of somatic GATA2 zinc finger mutations on erythroid differentiation. Experimental Hematology, 2022, 108, 26-35.	0.2	1
3	DNA sequence-dependent formation of heterochromatin nanodomains. Nature Communications, 2022, 13, 1861.	5.8	18
4	Abstract 2350: Foxj1 is a new master regulator of activated PI3K pathway pancreatic cancer. Cancer Research, 2022, 82, 2350-2350.	0.4	0
5	SETDB1 is required for intestinal epithelial differentiation and the prevention of intestinal inflammation. Gut, 2021, 70, 485-498.	6.1	39
6	Epstein-Barr virus inactivates the transcriptome and disrupts the chromatin architecture of its host cell in the first phase of lytic reactivation. Nucleic Acids Research, 2021, 49, 3217-3241.	6.5	16
7	Suv4-20h2 protects against influenza virus infection by suppression of chromatin loop formation. IScience, 2021, 24, 102660.	1.9	3
8	Promoter G-quadruplexes and transcription factors cooperate to shape the cell type-specific transcriptome. Nature Communications, 2021, 12, 3885.	5.8	116
9	Epithelial cell plasticity drives endoderm formation during gastrulation. Nature Cell Biology, 2021, 23, 692-703.	4.6	41
10	Environmental signals rather than layered ontogeny imprint the function of type 2 conventional dendritic cells in young and adult mice. Nature Communications, 2021, 12, 464.	5.8	25
11	The <i>MDM2</i> inducible promoter folds into four-tetrad antiparallel G-quadruplexes targetable to fight malignant liposarcoma. Nucleic Acids Research, 2021, 49, 847-863.	6.5	23
12	Morc3 silences endogenous retroviruses by enabling Daxx-mediated histone H3.3 incorporation. Nature Communications, 2021, 12, 5996.	5.8	34
13	Evolving Exhaustion of T Cells during the Course of the Disease in AML Can be Abrogated By CD33 BiTE ® Construct Mediated Cytotoxicity. Blood, 2021, 138, 1172-1172.	0.6	2
14	HIV-1 infection activates endogenous retroviral promoters regulating antiviral gene expression. Nucleic Acids Research, 2020, 48, 10890-10908.	6.5	54
15	The Kidney Contains Ontogenetically Distinct Dendritic Cell and Macrophage Subtypes throughout Development That Differ in Their Inflammatory Properties. Journal of the American Society of Nephrology: JASN, 2020, 31, 257-278.	3.0	62
16	Pre-marked chromatin and transcription factor co-binding shape the pioneering activity of Foxa2. Nucleic Acids Research, 2019, 47, 9069-9086.	6.5	65
17	Point mutations in the PDX1 transactivation domain impair human β-cell development and function. Molecular Metabolism, 2019, 24, 80-97.	3.0	58
18	Blimp1 Prevents Methylation of Foxp3 and Loss of Regulatory T Cell Identity at Sites of Inflammation. Cell Reports, 2019, 26, 1854-1868.e5.	2.9	91

GUNNAR SCHOTTA

#	Article	IF	CITATIONS
19	BZLF1 interacts with chromatin remodelers promoting escape from latent infections with EBV. Life Science Alliance, 2019, 2, e201800108.	1.3	32
20	Genome-wide analysis of PDX1 target genes in human pancreatic progenitors. Molecular Metabolism, 2018, 9, 57-68.	3.0	67
21	The Aryl Hydrocarbon Receptor Pathway Defines the Time Frame for Restorative Neurogenesis. Cell Reports, 2018, 25, 3241-3251.e5.	2.9	34
22	The SUV4-20 inhibitor A-196 verifies a role for epigenetics in genomic integrity. Nature Chemical Biology, 2017, 13, 317-324.	3.9	98
23	Silencing of endogenous retroviruses by heterochromatin. Cellular and Molecular Life Sciences, 2017, 74, 2055-2065.	2.4	100
24	Histone H4K20 triâ€methylation at lateâ€firing origins ensures timely heterochromatin replication. EMBO Journal, 2017, 36, 2726-2741.	3.5	61
25	Mapping H4K20me3 onto the chromatin landscape of senescent cells indicates a function in control of cell senescence and tumor suppression through preservation of genetic and epigenetic stability. Genome Biology, 2016, 17, 158.	3.8	65
26	Â-globin expression is regulated by SUV4-20h1. Haematologica, 2016, 101, e168-e172.	1.7	3
27	Production of Small Noncoding RNAs from the <i>flamenco</i> Locus Is Regulated by the <i>gypsy</i> Retrotransposon of <i>Drosophila melanogaster</i> . Genetics, 2016, 204, 631-644.	1.2	16
28	A Damage-Independent Role for 53BP1 that Impacts Break Order and Igh Architecture during Class Switch Recombination. Cell Reports, 2016, 16, 48-55.	2.9	29
29	Loss of Uhrf1 in neural stem cells leads to activation of retroviral elements and delayed neurodegeneration. Genes and Development, 2016, 30, 2199-2212.	2.7	58
30	Cross-species analyses unravel the complexity of H3K27me3 and H4K20me3 in the context of neural stem progenitor cells. Neuroepigenetics, 2016, 6, 10-25.	2.8	18
31	Retrotransposon derepression leads to activation of the unfolded protein response and apoptosis in pro-B cells. Development (Cambridge), 2016, 143, 1788-99.	1.2	22
32	Atrx promotes heterochromatin formation atÂretrotransposons. EMBO Reports, 2015, 16, 836-850.	2.0	126
33	Specificity, propagation, and memory of pericentric heterochromatin. Molecular Systems Biology, 2014, 10, 746.	3.2	80
34	Quiescence-Induced LncRNAs Trigger H4K20 Trimethylation and Transcriptional Silencing. Molecular Cell, 2014, 54, 675-682.	4.5	136
35	Concerted Activities of Distinct H4K20 Methyltransferases at DNA Double-Strand Breaks Regulate 53BP1 Nucleation and NHEJ-Directed Repair. Cell Reports, 2014, 8, 430-438.	2.9	77
36	Comment on "Biomolecular dynamics and binding studies in the living cell―by Stephan Diekmann and Christian Hoischen. Physics of Life Reviews, 2014, 11, 31-32.	1.5	1

GUNNAR SCHOTTA

#	Article	IF	CITATIONS
37	Epigenetics of eu- and heterochromatin in inverted and conventional nuclei from mouse retina. Chromosome Research, 2013, 21, 535-554.	1.0	53
38	Dynamic changes of the epigenetic landscape during cellular differentiation. Epigenomics, 2013, 5, 701-713.	1.0	13
39	H3K56me3 Is a Novel, Conserved Heterochromatic Mark That Largely but Not Completely Overlaps with H3K9me3 in Both Regulation and Localization. PLoS ONE, 2013, 8, e51765.	1.1	53
40	Suv4-20h Histone Methyltransferases Promote Neuroectodermal Differentiation by Silencing the Pluripotency-Associated Oct-25 Gene. PLoS Genetics, 2013, 9, e1003188.	1.5	30
41	FSHD muscular dystrophy region gene 1 binds Suv4-20h1 histone methyltransferase and impairs myogenesis. Journal of Molecular Cell Biology, 2013, 5, 294-307.	1.5	26
42	Histone H4 Lysine 20 methylation: key player in epigenetic regulation of genomic integrity. Nucleic Acids Research, 2013, 41, 2797-2806.	6.5	313
43	Suv4-20h2 mediates chromatin compaction and is important for cohesin recruitment to heterochromatin. Genes and Development, 2013, 27, 859-872.	2.7	105
44	The compact view on heterochromatin. Cell Cycle, 2013, 12, 2925-2926.	1.3	11
45	CENP-C facilitates the recruitment of M18BP1 to centromeric chromatin. Nucleus, 2012, 3, 101-110.	0.6	111
46	Impact of Histone H4 Lysine 20 Methylation on 53BP1 Responses to Chromosomal Double Strand Breaks. PLoS ONE, 2012, 7, e49211.	1.1	50
47	H4K20 monomethylation faces the WNT. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 3097-3098.	3.3	5
48	Suv4-20h Abrogation Enhances Telomere Elongation during Reprogramming and Confers a Higher Tumorigenic Potential to iPS Cells. PLoS ONE, 2011, 6, e25680.	1.1	26
49	Heterochromatin dysregulation in human diseases. Journal of Applied Physiology, 2010, 109, 232-242.	1.2	31
50	PR‣ET7 and SUV4â€20H regulate H4 lysineâ€20 methylation at imprinting control regions in the mouse. EMBO Reports, 2008, 9, 998-1005.	2.0	72
51	A chromatin-wide transition to H4K20 monomethylation impairs genome integrity and programmed DNA rearrangements in the mouse. Genes and Development, 2008, 22, 2048-2061.	2.7	378
52	Suv4-20h deficiency results in telomere elongation and derepression of telomere recombination. Journal of Cell Biology, 2007, 178, 925-936.	2.3	237
53	Active and Repressive Chromatin Are Interspersed without Spreading in an Imprinted Gene Cluster in the Mammalian Genome. Molecular Cell, 2007, 27, 353-366.	4.5	138
54	Loss of acetylation at Lys16 and trimethylation at Lys20 of histone H4 is a common hallmark of human cancer. Nature Genetics, 2005, 37, 391-400.	9.4	1,710

#	Article	IF	CITATIONS
55	Su(var) genes regulate the balance between euchromatin and heterochromatin in Drosophila. Genes and Development, 2004, 18, 2973-2983.	2.7	238
56	A silencing pathway to induce H3-K9 and H4-K20 trimethylation at constitutive heterochromatin. Genes and Development, 2004, 18, 1251-1262.	2.7	946