Joseph Avruch

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9546221/publications.pdf

Version: 2024-02-01

116 papers 33,546 citations

⁹⁷⁸⁶
73
h-index

23533 111 g-index

148 all docs $\begin{array}{c} 148 \\ \\ \text{docs citations} \end{array}$

148 times ranked 28356 citing authors

#	Article	IF	CITATIONS
1	RNA m6A reader IMP2/IGF2BP2 promotes pancreatic \hat{l}^2 -cell proliferation and insulin secretion by enhancing PDX1 expression. Molecular Metabolism, 2021, 48, 101209.	6.5	28
2	A MicroRNA Linking Human Positive Selection and Metabolic Disorders. Cell, 2020, 183, 684-701.e14.	28.9	46
3	IMP2 Increases Mouse Skeletal Muscle Mass and Voluntary Activity by Enhancing Autocrine Insulin-Like Growth Factor 2 Production and Optimizing Muscle Metabolism. Molecular and Cellular Biology, 2019, 39, .	2.3	12
4	Liver-specific deletion of IGF2 mRNA binding protein-2/IMP2 reduces hepatic fatty acid oxidation and increases hepatic triglyceride accumulation. Journal of Biological Chemistry, 2019, 294, 11944-11951.	3.4	34
5	Pancreatic islet chromatin accessibility and conformation reveals distal enhancer networks of type 2 diabetes risk. Nature Communications, 2019, 10, 2078.	12.8	82
6	Cryo-EM insight into the structure of MTOR complex 1 and its interactions with Rheb and substrates. F1000Research, 2019, 8 , 14 .	1.6	17
7	The Mst1 Kinase Is Required for Follicular B Cell Homing and B-1 B Cell Development. Frontiers in Immunology, 2018, 9, 2393.	4.8	13
8	IGF2 mRNA binding protein-2 is a tumor promoter that drives cancer proliferation through its client mRNAs IGF2 and HMGA1. ELife, 2017, 6 , .	6.0	77
9	Evolution ofÂTOR and Translation Control. , 2016, , 327-411.		8
10	MST1/MST2 Protein Kinases: Regulation and Physiologic Roles. Biochemistry, 2016, 55, 5507-5519.	2.5	73
11	A Genome-Wide siRNA Screen in Mammalian Cells for Regulators of S6 Phosphorylation. PLoS ONE, 2015, 10, e0116096.	2.5	10
12	YAP Inhibition Restores Hepatocyte Differentiation in Advanced HCC, Leading to Tumor Regression. Cell Reports, 2015, 10, 1692-1707.	6.4	213
13	IGF2BP2/IMP2-Deficient Mice Resist Obesity through Enhanced Translation of Ucp1 mRNA and Other mRNAs Encoding Mitochondrial Proteins. Cell Metabolism, 2015, 21, 609-621.	16.2	148
14	Kinases Mst1 and Mst2 positively regulate phagocytic induction of reactive oxygen species and bactericidal activity. Nature Immunology, 2015, 16, 1142-1152.	14.5	218
15	Amino Acids Activate Mammalian Target of Rapamycin (mTOR) Complex 1 without Changing Rag GTPase Guanyl Nucleotide Charging. Journal of Biological Chemistry, 2014, 289, 2658-2674.	3.4	53
16	G proteinâ€coupled receptors engage the mammalian Hippo pathway through Fâ€actin. BioEssays, 2013, 35, 430-435.	2.5	23
17	mTOR complex 2 phosphorylates IMP1 cotranslationally to promote IGF2 production and the proliferation of mouse embryonic fibroblasts. Genes and Development, 2013, 27, 301-312.	5.9	80
18	MST1/2 and Other Upstream Signaling that Affect Hippo Pathway Function., 2013,, 27-49.		0

#	Article	IF	Citations
19	YAP oncogene overexpression supercharges colon cancer proliferation. Cell Cycle, 2012, 11, 1090-1096.	2.6	106
20	The Mst1 and Mst2 kinases control activation of rho family GTPases and thymic egress of mature thymocytes. Journal of Experimental Medicine, 2012, 209, 741-759.	8.5	146
21	Protein kinases of the Hippo pathway: Regulation and substrates. Seminars in Cell and Developmental Biology, 2012, 23, 770-784.	5.0	207
22	Mammalian MAPK Signal Transduction Pathways Activated by Stress and Inflammation: A 10-Year Update. Physiological Reviews, 2012, 92, 689-737.	28.8	1,122
23	Hippo pathway in intestinal homeostasis and tumorigenesis. Protein and Cell, 2012, 3, 305-310.	11.0	30
24	A Genome-wide RNAi Screen for Polypeptides that Alter rpS6 Phosphorylation. Methods in Molecular Biology, 2012, 821, 187-214.	0.9	4
25	Yap1 Acts Downstream of α-Catenin to Control Epidermal Proliferation. Cell, 2011, 144, 782-795.	28.9	923
26	Mst1/2 signalling to Yap: gatekeeper for liver size and tumour development. British Journal of Cancer, 2011, 104, 24-32.	6.4	106
27	mTOR phosphorylates IMP2 to promote IGF2 mRNA translation by internal ribosomal entry. Genes and Development, 2011, 25, 1159-1172.	5.9	148
28	Mst1 and Mst2 protein kinases restrain intestinal stem cell proliferation and colonic tumorigenesis by inhibition of Yes-associated protein (Yap) overabundance. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, E1312-20.	7.1	392
29	The Mechanism of Insulin-stimulated 4E-BP Protein Binding to Mammalian Target of Rapamycin (mTOR) Complex 1 and Its Contribution to mTOR Complex 1 Signaling. Journal of Biological Chemistry, 2011 , 286 , 38043 - 38053 .	3.4	33
30	Nek9 is a Plk1-activated kinase that controls early centrosome separation through Nek6/7 and Eg5. EMBO Journal, 2011 , 30 , $2634-2647$.	7.8	139
31	Tumor Suppressor Ras Association Domain Family 5 (RASSF5/NORE1) Mediates Death Receptor Ligand-induced Apoptosis. Journal of Biological Chemistry, 2010, 285, 35029-35038.	3.4	70
32	Regulation of TOR Complex 1 by Amino Acids Through Small GTPases. The Enzymes, 2010, 27, 57-73.	1.7	0
33	Rassf Family of Tumor Suppressor Polypeptides. Journal of Biological Chemistry, 2009, 284, 11001-11005.	3.4	106
34	The TSC-mTOR Pathway Mediates Translational Activation of TOP mRNAs by Insulin Largely in a Raptor-or Rictor-Independent Manner. Molecular and Cellular Biology, 2009, 29, 640-649.	2.3	111
35	Mst1 and Mst2 Maintain Hepatocyte Quiescence andÂSuppress Hepatocellular Carcinoma Development through Inactivation of the Yap1 Oncogene. Cancer Cell, 2009, 16, 425-438.	16.8	809
36	Amino acid regulation of TOR complex 1. American Journal of Physiology - Endocrinology and Metabolism, 2009, 296, E592-E602.	3.5	332

#	Article	IF	Citations
37	Activation of mTORC1 in two steps: Rheb-GTP activation of catalytic function and increased binding of substrates to raptor1. Biochemical Society Transactions, 2009, 37, 223-226.	3.4	59
38	Characterization of two Mst1â€deficient mouse models. Developmental Dynamics, 2008, 237, 3424-3434.	1.8	7
39	MOBKL1A/MOBKL1B Phosphorylation by MST1 and MST2 Inhibits Cell Proliferation. Current Biology, 2008, 18, 311-321.	3.9	352
40	A Rictor-Myo1c Complex Participates in Dynamic Cortical Actin Events in 3T3-L1 Adipocytes. Molecular and Cellular Biology, 2008, 28, 4215-4226.	2.3	71
41	The NIMA-family kinase Nek6 phosphorylates the kinesin Eg5 at a novel site necessary for mitotic spindle formation. Journal of Cell Science, 2008, 121, 3912-3921.	2.0	125
42	The Nore1B/Mst1 complex restrains antigen receptor-induced proliferation of $na\tilde{A}^-$ ve T cells. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 20321-20326.	7.1	135
43	The Proline-rich Akt Substrate of 40 kDa (PRAS40) Is a Physiological Substrate of Mammalian Target of Rapamycin Complex 1*. Journal of Biological Chemistry, 2007, 282, 20329-20339.	3.4	275
44	The Rheb Switch 2 Segment Is Critical for Signaling to Target of Rapamycin Complex 1. Journal of Biological Chemistry, 2007, 282, 18542-18551.	3.4	40
45	MAP kinase pathways: The first twenty years. Biochimica Et Biophysica Acta - Molecular Cell Research, 2007, 1773, 1150-1160.	4.1	236
46	Insulin and amino-acid regulation of mTOR signaling and kinase activity through the Rheb GTPase. Oncogene, 2006, 25, 6361-6372.	5.9	280
47	Nore1 and RASSF1 Regulation of Cell Proliferation and of the MST1/2 Kinases. Methods in Enzymology, 2006, 407, 290-310.	1.0	81
48	Recent advances in the regulation of the TOR pathway by insulin and nutrients. Current Opinion in Clinical Nutrition and Metabolic Care, 2005, 8, 67-72.	2.5	84
49	Rheb Binds and Regulates the mTOR Kinase. Current Biology, 2005, 15, 702-713.	3.9	842
50	Glutamatergic Regulation of the p70S6 Kinase in Primary Mouse Neurons*. Journal of Biological Chemistry, 2005, 280, 38121-38124.	3.4	126
51	Rheb Binding to Mammalian Target of Rapamycin (mTOR) Is Regulated by Amino Acid Sufficiency. Journal of Biological Chemistry, 2005, 280, 23433-23436.	3.4	304
52	The Scaffold Protein CNK1 Interacts with the Tumor Suppressor RASSF1A and Augments RASSF1A-induced Cell Death. Journal of Biological Chemistry, 2004, 279, 29247-29254.	3.4	82
53	Dissociation of raptor from mTOR is a mechanism of rapamycinâ€induced inhibition of mTOR function. Genes To Cells, 2004, 9, 359-366.	1.2	274
54	Nore1 inhibits tumor cell growth independent of Ras or the MST1/2 kinases. Oncogene, 2004, 23, 3426-3433.	5.9	85

#	Article	IF	CITATIONS
55	Regulation of the MST1 kinase by autophosphorylation, by the growth inhibitory proteins, RASSF1 and NORE1, and by Ras. Biochemical Journal, 2004, 381, 453-462.	3.7	310
56	The Mammalian Target of Rapamycin (mTOR) Partner, Raptor, Binds the mTOR Substrates p70 S6 Kinase and 4E-BP1 through Their TOR Signaling (TOS) Motif. Journal of Biological Chemistry, 2003, 278, 15461-15464.	3.4	567
57	A Mitotic Cascade of NIMA Family Kinases. Journal of Biological Chemistry, 2003, 278, 34897-34909.	3.4	154
58	Nercc1, a mammalian NIMA-family kinase, binds the Ran GTPase and regulates mitotic progression. Genes and Development, 2002, 16, 1640-1658.	5.9	126
59	14-3-3 Proteins: Active Cofactors in Cellular Regulation by Serine/Threonine Phosphorylation. Journal of Biological Chemistry, 2002, 277, 3061-3064.	3.4	451
60	Death-associated Protein 4 Binds MST1 and Augments MST1-induced Apoptosis. Journal of Biological Chemistry, 2002, 277, 47991-48001.	3.4	79
61	Raptor, a Binding Partner of Target of Rapamycin (TOR), Mediates TOR Action. Cell, 2002, 110, 177-189.	28.9	1,612
62	Identification of a Novel Ras-Regulated Proapoptotic Pathway. Current Biology, 2002, 12, 253-265.	3.9	343
63	TOR Deficiency in C. elegans Causes Developmental Arrest and Intestinal Atrophy by Inhibition of mRNA Translation. Current Biology, 2002, 12, 1448-1461.	3.9	252
64	The putative tumor suppressor RASSF1A homodimerizes and heterodimerizes with the Ras-GTP binding protein Nore1. Oncogene, 2002, 21, 1381-1390.	5.9	205
65	RASSF3 and NORE1: identification and cloning of two human homologues of the putative tumor suppressor gene RASSF1. Oncogene, 2002, 21, 2713-2720.	5.9	104
66	Mammalian Mitogen-Activated Protein Kinase Signal Transduction Pathways Activated by Stress and Inflammation. Physiological Reviews, 2001, 81, 807-869.	28.8	3,019
67	Extracellular ATP stimulates an inhibitory pathway towards growth factor-induced cRaf-1 and MEKK activation in astrocyte cultures. Journal of Neurochemistry, 2001, 77, 1001-1009.	3.9	31
68	Role of mitogen-activated protein kinase cascades in P2Y receptor-mediated trophic activation of astroglial cells. Drug Development Research, 2001, 53, 158-165.	2.9	8
69	Identification of the NIMA family kinases NEK6/7 as regulators of the p70 ribosomal S6 kinase. Current Biology, 2001, 11, 1155-1167.	3.9	72
70	Amino Acid-Induced Translation of TOP mRNAs Is Fully Dependent on Phosphatidylinositol 3-Kinase-Mediated Signaling, Is Partially Inhibited by Rapamycin, and Is Independent of S6K1 and rpS6 Phosphorylation. Molecular and Cellular Biology, 2001, 21, 8671-8683.	2.3	274
71	P _{2Y} purinoceptor subtypes recruit different Mek activators in astrocytes. British Journal of Pharmacology, 2000, 129, 927-936.	5.4	91
72	Serine phosphorylation and maximal activation of STAT3 during CNTF signaling is mediated by the rapamycin target mTOR. Current Biology, 2000, 10, 47-50.	3.9	422

#	Article	IF	CITATIONS
73	Calyculin A-induced Vimentin Phosphorylation Sequesters 14-3-3 and Displaces Other 14-3-3 Partners in Vivo. Journal of Biological Chemistry, 2000, 275, 29772-29778.	3.4	134
74	Regulation of Translational Effectors by Amino Acid and Mammalian Target of Rapamycin Signaling Pathways. Journal of Biological Chemistry, 1999, 274, 1058-1065.	3.4	188
75	Immunopurified Mammalian Target of Rapamycin Phosphorylates and Activates p70 S6 Kinase $\hat{l}\pm$ in Vitro. Journal of Biological Chemistry, 1999, 274, 34493-34498.	3.4	296
76	Intracellular signalling: PDK1 – a kinase at the hub of things. Current Biology, 1999, 9, R93-R96.	3.9	203
77	Insulin signal transduction through protein kinase cascades. , 1998, 182, 31-48.		317
78	A signal for β-cell failure. Nature, 1998, 391, 846-847.	27.8	7
79	A dimeric 14-3-3 protein is an essential cofactor for Raf kinase activity. Nature, 1998, 394, 88-92.	27.8	442
80	3-Phosphoinositide-dependent protein kinase 1 (PDK1) phosphorylates and activates the p70 S6 kinase in vivo and in vitro. Current Biology, 1998, 8, 69-81.	3.9	551
81	Amino Acid Sufficiency and mTOR Regulate p70 S6 Kinase and eIF-4E BP1 through a Common Effector Mechanism. Journal of Biological Chemistry, 1998, 273, 14484-14494.	3.4	1,200
82	Identification of Nore1 as a Potential Ras Effector. Journal of Biological Chemistry, 1998, 273, 5439-5442.	3.4	166
83	Identification of Regulatory Phosphorylation Sites in Mitogen-activated Protein Kinase (MAPK)-activated Protein Kinase-1a/p90 That Are Inducible by MAPK. Journal of Biological Chemistry, 1998, 273, 1496-1505.	3.4	333
84	Regulation of the p70 S6 Kinase by Phosphorylation in Vivo. Journal of Biological Chemistry, 1998, 273, 16621-16629.	3.4	349
85	Actin-biding Protein-280 Binds the Stress-activated Protein Kinase (SAPK) Activator SEK-1 and Is Required for Tumor Necrosis Factor-α Activation of SAPK in Melanoma Cells. Journal of Biological Chemistry, 1997, 272, 2620-2628.	3.4	147
86	MST/MLK2, a Member of the Mixed Lineage Kinase Family, Directly Phosphorylates and Activates SEK1, an Activator of c-Jun N-terminal Kinase/Stress-activated Protein Kinase. Journal of Biological Chemistry, 1997, 272, 15167-15173.	3.4	169
87	Regulation of elF-4E BP1 Phosphorylation by mTOR. Journal of Biological Chemistry, 1997, 272, 26457-26463.	3.4	435
88	The Mixed Lineage Kinase SPRK Phosphorylates and Activates the Stress-activated Protein Kinase Activator, SEK-1. Journal of Biological Chemistry, 1996, 271, 19025-19028.	3.4	209
89	Protein kinase cascades activated by stress and inflammatory cytokines. BioEssays, 1996, 18, 567-577.	2.5	705
90	Oligomerization activates c-Raf-1 through a Ras-dependent mechanism. Nature, 1996, 383, 181-185.	27.8	241

#	Article	IF	Citations
91	Sounding the Alarm: Protein Kinase Cascades Activated by Stress and Inflammation. Journal of Biological Chemistry, 1996, 271, 24313-24316.	3.4	1,013
92	[33] Ras-Raf complexes in Vitro. Methods in Enzymology, 1995, 255, 323-331.	1.0	7
93	Activation of the SAPK pathway by the human STE20 homologue germinal centre kinase. Nature, 1995, 377, 750-754.	27.8	218
94	REGULATION OF NUCLEAR TRANSCRIPTION FACTORS BY STRESS SIGNALS. Clinical and Experimental Pharmacology and Physiology, 1995, 22, 281-283.	1.9	34
95	lonizing Radiation Stimulates a Grb2-mediated Association of the Stress-activated Protein Kinase with Phosphatidylinositol 3-Kinase. Journal of Biological Chemistry, 1995, 270, 18871-18874.	3.4	65
96	Identification of the 14.3.3 \hat{I}^{q} Domains Important for Self-association and Raf Binding. Journal of Biological Chemistry, 1995, 270, 23681-23687.	3.4	91
97	The Stress-activated Protein Kinases Annals of the New York Academy of Sciences, 1995, 766, 303-319.	3.8	63
98	Role of SAPK/ERK kinase-1 in the stress-activated pathway regulating transcription factor c-Jun. Nature, 1994, 372, 794-798.	27.8	1,016
99	Raf meets Ras: completing the framework of a signal transduction pathway. Trends in Biochemical Sciences, 1994, 19, 279-283.	7.5	565
100	The stress-activated protein kinase subfamily of c-Jun kinases. Nature, 1994, 369, 156-160.	27.8	2,631
101	Normal and oncogenic p21ras proteins bind to the amino-terminal regulatory domain of c-Raf-1. Nature, 1993, 364, 308-313.	27.8	879
102	Growth factor-activated kinases phosphorylate IRE-ABP. Biochemical Society Transactions, 1992, 20, 691-693.	3.4	9
103	Raf-1 activates MAP kinase-kinase. Nature, 1992, 358, 417-421.	27.8	1,299
104	Phosphorylation of c-jun mediated by MAP kinases. Nature, 1991, 353, 670-674.	27.8	1,454
105	Purification and characterisation of the insulin-stimulated protein kinase from rabbit skeletal muscle; close similarity to S6 kinase II. FEBS Journal, 1991, 199, 723-728.	0.2	120
106	Kinetic properties of the insulin receptor tyrosine protein kinase: Activation through an insulin-stimulated tyrosine-specific, intramolecular autophosphorylation. Archives of Biochemistry and Biophysics, 1986, 244, 102-113.	3.0	60
107	An insulin-stimulated (ribosomal S6) protein kinase from soluble extracts of H4 hepatoma cells. Archives of Biochemistry and Biophysics, 1986, 245, 196-203.	3.0	63
108	Insulin binds to and promotes the phosphorylation of a M r 210 000 component of its receptor in detergent extracts of rat liver microsomes. FEBS Letters, 1983, 158, 243-246.	2.8	19

#	Article	IF	CITATIONS
109	A rapid and convenient method for preparing salt-free [\hat{l}^3 -32P]ATP. Analytical Biochemistry, 1981, 116, 372-373.	2.4	37
110	Studies on the mechanism of insulin-stimulated protein phosphorylation in adipocytes. Biochemical and Biophysical Research Communications, 1980, 94, 1331-1336.	2.1	11
111	Phosphorylation and dephosphorylation of spectrin. Journal of Supramolecular Structure, 1978, 9, 97-112.	2.3	60
112	Phosphoprotein phosphatase of the human erythrocyte. Biochemical and Biophysical Research Communications, 1976, 72, 701-708.	2.1	45
113	Insulin regulation of glycogen synthase in the isolated rat hepatocyte. Biochemical and Biophysical Research Communications, 1976, 69, 997-1003.	2.1	49
114	Regulation of plasma membrane protein phosphorylation in two mammalian cell types. Journal of Cellular Physiology, 1976, 89, 815-826.	4.1	39
115	Four gel systems for electrophoretic fractionation of membrane proteins using ionic detergents. Journal of Supramolecular Structure, 1972, 1, 66-75.	2.3	107
116	The putative tumor suppressor RASSF1A homodimerizes and heterodimerizes with the Ras-GTP binding protein Nore1. , 0, .		3