Jason C Waithman

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9546048/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Migratory Dendritic Cells Transfer Antigen to a Lymph Node-Resident Dendritic Cell Population for Efficient CTL Priming. Immunity, 2006, 25, 153-162.	6.6	637
2	Cross-presentation of viral and self antigens by skin-derived CD103+ dendritic cells. Nature Immunology, 2009, 10, 488-495.	7.0	612
3	The Dendritic Cell Populations of Mouse Lymph Nodes. Journal of Immunology, 2001, 167, 741-748.	0.4	408
4	Dendritic Cell-Induced Memory T Cell Activation in Nonlymphoid Tissues. Science, 2008, 319, 198-202.	6.0	398
5	Cognate CD4+ T cell licensing of dendritic cells in CD8+ T cell immunity. Nature Immunology, 2004, 5, 1143-1148.	7.0	387
6	Systemic activation of dendritic cells by Toll-like receptor ligands or malaria infection impairs cross-presentation and antiviral immunity. Nature Immunology, 2006, 7, 165-172.	7.0	308
7	Tissue-resident memory CD8+ T cells promote melanoma–immune equilibrium in skin. Nature, 2019, 565, 366-371.	13.7	266
8	The Lymphoid Past of Mouse Plasmacytoid Cells and Thymic Dendritic Cells. Journal of Immunology, 2003, 170, 4926-4932.	0.4	181
9	NLRC4 inflammasomes in dendritic cells regulate noncognate effector function by memory CD8+ T cells. Nature Immunology, 2012, 13, 162-169.	7.0	150
10	Skin-Derived Dendritic Cells Can Mediate Deletional Tolerance of Class I-Restricted Self-Reactive T Cells. Journal of Immunology, 2007, 179, 4535-4541.	0.4	115
11	Dendritic Cells and Cancer: From Biology to Therapeutic Intervention. Cancers, 2019, 11, 521.	1.7	100
12	Understanding acute burn injury as a chronic disease. Burns and Trauma, 2019, 7, 23.	2.3	86
13	<scp>PTPN</scp> 2 phosphatase deletion in T cells promotes antiâ€ŧumour immunity and <scp>CAR</scp> Tâ€ɛell efficacy in solid tumours. EMBO Journal, 2020, 39, e103637.	3.5	79
14	Resident CD8+ and Migratory CD103+ Dendritic Cells Control CD8 T Cell Immunity during Acute Influenza Infection. PLoS ONE, 2013, 8, e66136.	1.1	74
15	The Immune Response to Skin Trauma Is Dependent on the Etiology of Injury in a Mouse Model of Burn and Excision. Journal of Investigative Dermatology, 2015, 135, 2119-2128.	0.3	71
16	Mixed Proteasomes Function To Increase Viral Peptide Diversity and Broaden Antiviral CD8+ T Cell Responses. Journal of Immunology, 2013, 191, 52-59.	0.4	59
17	Cross-presentation of cutaneous melanoma antigen by migratory XCR1 ⁺ CD103 ^{â~`} and XCR1 ⁺ CD103 ⁺ dendritic cells. Oncolmmunology, 2015, 4, e1019198.	2.1	48
18	Altered Immunity and Dendritic Cell Activity in the Periphery of Mice after Long-Term Engraftment with Bone Marrow from Ultraviolet-Irradiated Mice. Journal of Immunology, 2013, 190, 5471-5484.	0.4	45

JASON C WAITHMAN

#	Article	IF	CITATIONS
19	Dendritic cells and influenza A virus infection. Virulence, 2012, 3, 603-608.	1.8	42
20	IL-18, but not IL-12, Regulates NK Cell Activity following Intranasal Herpes Simplex Virus Type 1 Infection. Journal of Immunology, 2007, 179, 3214-3221.	0.4	36
21	Influenza A Infection Enhances Cross-Priming of CD8+T Cells to Cell-Associated Antigens in a TLR7- and Type I IFN-Dependent Fashion. Journal of Immunology, 2010, 185, 6013-6022.	0.4	34
22	Cross-Presenting XCR1+ Dendritic Cells as Targets for Cancer Immunotherapy. Cells, 2020, 9, 565.	1.8	28
23	Prostaglandin E2 imprints a long-lasting effect on dendritic cell progenitors in the bone marrow. Journal of Leukocyte Biology, 2013, 95, 225-232.	1.5	25
24	Cutting Edge: Enhanced IL-2 Signaling Can Convert Self-Specific T Cell Response from Tolerance to Autoimmunity. Journal of Immunology, 2008, 180, 5789-5793.	0.4	22
25	Tissue destruction caused by cytotoxic T lymphocytes induces deletional tolerance. Proceedings of the United States of America, 2009, 106, 3901-3906.	3.3	19
26	Timing of excision after a non-severe burn has a significant impact on the subsequent immune response in a murine model. Burns, 2016, 42, 815-824.	1.1	18
27	Dietary Vitamin D Increases Percentages and Function of Regulatory T Cells in the Skin-Draining Lymph Nodes and Suppresses Dermal Inflammation. Journal of Immunology Research, 2016, 2016, 1-13.	0.9	16
28	Fine-Tuning the Tumour Microenvironment: Current Perspectives on the Mechanisms of Tumour Immunosuppression. Cells, 2021, 10, 56.	1.8	14
29	Acquired resistance during adoptive cell therapy by transcriptional silencing of immunogenic antigens. Oncolmmunology, 2019, 8, 1609874.	2.1	13
30	IFNÎ ² Is a Potent Adjuvant for Cancer Vaccination Strategies. Frontiers in Immunology, 2021, 12, 735133.	2.2	11
31	Impaired T cell proliferation by ex vivo BET-inhibition impedes adoptive immunotherapy in a murine melanoma model. Epigenetics, 2020, 15, 134-144.	1.3	10
32	CD8+XCR1neg Dendritic Cells Express High Levels of Toll-Like Receptor 5 and a Unique Complement of Endocytic Receptors. Frontiers in Immunology, 2018, 9, 2990.	2.2	8
33	Accumulation of CD103 ⁺ CD8 ⁺ T cells in a cutaneous melanoma micrometastasis. Clinical and Translational Immunology, 2019, 8, e1100.	1.7	8
34	Diverse Anti-Tumor Immune Potential Driven by Individual IFNα Subtypes. Frontiers in Immunology, 2020, 11, 542.	2.2	6
35	Skin tumor immunity: Site does matter for antigen presentation by DCs. European Journal of Immunology, 2016, 46, 543-546.	1.6	3
36	Non-severe burn injury increases cancer incidence in mice and has long-term impacts on the activation and function of T cells. Burns and Trauma, 2022, 10, tkac016.	2.3	3

JASON C WAITHMAN

#	Article	IF	CITATIONS
37	Optimal conditions required for influenza A infectionâ€enhanced crossâ€priming of CD8 + T cells specific to cellâ€associated antigens. Immunology and Cell Biology, 2013, 91, 576-582.	1.0	2
38	T cells recognizing a 11mer influenza peptide complexed to Hâ€⊋D b show promiscuity for peptide length. Immunology and Cell Biology, 2015, 93, 500-507.	1.0	1
39	Directing the Future Breakthroughs in Immunotherapy: The Importance of a Holistic Approach to the Tumour Microenvironment. Cancers, 2021, 13, 5911.	1.7	1
40	IFNβ inhibits the development of allergen tolerance and is conducive to the development of asthma on subsequent allergen exposure. Immunology and Cell Biology, 2018, 96, 841-851.	1.0	0
41	Editorial: Insights Into Biomarkers, Cytokines, and Chemokines in Skin Cancer. Frontiers in Medicine, 2019, 6, 199.	1.2	0