Richard Laine

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9545705/publications.pdf

Version: 2024-02-01

240 papers 11,942 citations

59 h-index 101 g-index

247 all docs

247 docs citations

times ranked

247

6990 citing authors

#	Article	IF	CITATIONS
1	Organic/Inorganic Hybrid Composites from Cubic Silsesquioxanes. Journal of the American Chemical Society, 2001, 123, 11420-11430.	13.7	460
2	Nanobuilding blocks based on the $[OSiO1.5]x$ (x= 6, 8, 10) octasilsesquioxanes. Journal of Materials Chemistry, 2005, 15, 3725.	6.7	421
3	Highly Porous Polyhedral Silsesquioxane Polymers. Synthesis and Characterization. Journal of the American Chemical Society, 1998, 120, 8380-8391.	13.7	373
4	Preceramic polymer routes to silicon carbide. Chemistry of Materials, 1993, 5, 260-279.	6.7	299
5	Octa(aminophenyl)silsesquioxane as a Nanoconstruction Site. Journal of the American Chemical Society, 2001, 123, 12416-12417.	13.7	283
6	Silsesquioxanes as Synthetic Platforms. Thermally Curable and Photocurable Inorganic/Organic Hybrids. Macromolecules, 1996, 29, 2327-2330.	4.8	260
7	Organic/Inorganic Hybrid Composites from Cubic Silsesquioxanes. Epoxy Resins of Octa(dimethylsiloxyethylcyclohexylepoxide) Silsesquioxane. Macromolecules, 2003, 36, 5666-5682.	4.8	257
8	Hydrosilylation of Allyl Alcohol with [HSiMe2OSiO1.5]8: Octa(3-hydroxypropyldimethylsiloxy)octasilsesquioxane and Its Octamethacrylate Derivative as Potential Precursors to Hybrid Nanocomposites. Journal of the American Chemical Society, 2000, 122, 6979-6988.	13.7	251
9	Organic/Inorganic Hybrid Epoxy Nanocomposites from Aminophenylsilsesquioxanes. Macromolecules, 2004, 37, 99-109.	4.8	230
10	Organic–Inorganic Nanocomposites with Completely Defined Interfacial Interactions. Advanced Materials, 2001, 13, 800-803.	21.0	229
11	Polyhedral Phenylsilsesquioxanes. Macromolecules, 2011, 44, 1073-1109.	4.8	227
12	Lithium Ion Conducting Poly(ethylene oxide)-Based Solid Electrolytes Containing Active or Passive Ceramic Nanoparticles. Journal of Physical Chemistry C, 2017, 121, 2563-2573.	3.1	222
13	Organic/Inorganic Imide Nanocomposites from Aminophenylsilsesquioxanes. Chemistry of Materials, 2003, 15, 3365-3375.	6.7	196
14	Homogeneous catalysis by ruthenium carbonyl in alkaline solution: the water gas shift reaction. Journal of the American Chemical Society, 1977, 99, 252-253.	13.7	192
15	Silsesquioxanes as Synthetic Platforms. 3. Photocurable, Liquid Epoxides as Inorganic/Organic Hybrid Precursors. Chemistry of Materials, 1996, 8, 1592-1593.	6.7	183
16	A Polyimide Nanocomposite from Octa(aminophenyl)silsesquioxane. Chemistry of Materials, 2003, 15, 793-797.	6.7	179
17	Ultrafine Spinel Powders by Flame Spray Pyrolysis of a Magnesium Aluminum Double Alkoxide. Journal of the American Ceramic Society, 1996, 79, 1419-1423.	3.8	171
18	Toughening of Cubic Silsesquioxane Epoxy Nanocomposites Using Coreâ^'Shell Rubber Particles:Â A Three-Component Hybrid System. Macromolecules, 2004, 37, 3267-3276.	4.8	153

#	Article	IF	Citations
19	Organic/Inorganic Nanocomposite Star Polymers via Atom Transfer Radical Polymerization of Methyl Methacrylate Using Octafunctional Silsesquioxane Cores. Macromolecules, 2001, 34, 5398-5407.	4.8	150
20	Polyfunctional cubic silsesquioxanes as building blocks for organic/inorganic hybrids. Applied Organometallic Chemistry, 1998, 12, 715-723.	3.5	148
21	Transparent, Polycrystalline Upconverting Nanoceramics: Towards 3â€D Displays. Advanced Materials, 2008, 20, 1270-1273.	21.0	144
22	Synthesis of pentacoordinate silicon complexes from SiO2. Nature, 1991, 353, 642-644.	27.8	141
23	Flame made nanoparticles permit processing of dense, flexible, Li ⁺ conducting ceramic electrolyte thin films of cubic-Li ₇ La ₃ Zr ₂ O ₁₂ (c-LLZO). Journal of Materials Chemistry A, 2016, 4, 12947-12954.	10.3	131
24	Criteria for identifying transition metal cluster-catalyzed reactions. Journal of Molecular Catalysis, 1982, 14, 137-169.	1.2	125
25	<i>para</i> -Octaiodophenylsilsesquioxane, [<i>p</i> -IC ₆ H ₄ SiO _{1.5}] ₈ , a Nearly Perfect Nano-Building Block. ACS Nano, 2008, 2, 320-326.	14.6	119
26	Silsesquioxanes as synthetic platforms. II. Epoxy-functionalized inorganic-organic hybrid species. Journal of Organometallic Chemistry, 1996, 521, 199-201.	1.8	118
27	Poly(methylsilane)-A High Ceramic Yield Precursor to Silicon Carbide. Journal of the American Ceramic Society, 1991, 74, 670-673.	3.8	116
28	Molecules with Perfect Cubic Symmetry as Nanobuilding Blocks for 3-D Assemblies. Elaboration of Octavinylsilsesquioxane. Unusual Luminescence Shifts May Indicate Extended Conjugation Involving the Silsesquioxane Core. Chemistry of Materials, 2008, 20, 5563-5573.	6.7	116
29	Homogeneous catalysis of the water-gas shift reaction. Journal of Molecular Catalysis, 1988, 44, 357-387.	1.2	106
30	Nano Building Blocks via Iodination of [PhSiO _{1.5}] _{<i>n</i>} , Forming [<i>p</i> -l-C ₆ H ₄ SiO _{1.5}] _{<i>n</i>} (<i>n= 8, 10, 12), and a New Route to High-Surface-Area, Thermally Stable, Microporous Materials via Thermal Elimination of I₂. Journal of the American Chemical Society, 2010, 132, 10171-10183.</i>	13.7	106
31	Yttrium Aluminum Garnet Nanopowders Produced by Liquid-Feed Flame Spray Pyrolysis (LF-FSP) of Metalloorganic Precursors. Chemistry of Materials, 2004, 16, 822-831.	6.7	102
32	Liquid-Feed Flame Spray Pyrolysis of Metalloorganic and Inorganic Alumina Sources in the Production of Nanoalumina Powders. Chemistry of Materials, 2004, 16, 21-30.	6.7	97
33	Octa(3-chloroammoniumpropyl) octasilsesquioxane. Applied Organometallic Chemistry, 1999, 13, 329-336.	3.5	95
34	Potential models of the interactions between nitrogen-containing heterocycles and the active catalyst sites in heterogeneous hydrodenitrogenation catalysts. Organometallics, 1985, 4, 2033-2039.	2.3	94
35	Fluoride Rearrangement Reactions of Polyphenyl- and Polyvinylsilsesquioxanes as a Facile Route to Mixed Functional Phenyl, Vinyl T $<$ sub $>$ 10 $<$ /sub $>$ and T $<$ sub $>$ 12 $<$ /sub $>$ Silsesquioxanes. Journal of the American Chemical Society, 2010, 132, 3723-3736.	13.7	94
36	Homogeneous catalysis of the water gas shift reaction by mixed-metal (iron/ruthenium) catalysts. Journal of the American Chemical Society, 1978, 100, 4595-4597.	13.7	92

#	Article	IF	Citations
37	Laser action in strongly scattering rare-earth-metal-doped dielectric nanophosphors. Physical Review A, 2001, 65, .	2.5	92
38	Key parameters governing the densification of cubic-Li7La3Zr2O12 Li+ conductors. Journal of Power Sources, 2017, 352, 156-164.	7.8	92
39	Nano-α-Al2O3 by liquid-feed flame spray pyrolysis. Nature Materials, 2006, 5, 710-712.	27.5	91
40	Analyzing Structure–Photophysical Property Relationships for Isolated T ₈ , T ₁₀ , and T ₁₂ Stilbenevinylsilsesquioxanes. Journal of the American Chemical Society, 2013, 135, 12259-12269.	13.7	90
41	Applications of the water-gas shift reaction. Hydroformylation and hydrohydroxymethylation with carbon monoxide and water. Journal of the American Chemical Society, 1978, 100, 6451-6454.	13.7	89
42	Ultrafine titania by flame spray pyrolysis of a titanatrane complex. Journal of the European Ceramic Society, 1998, 18, 287-297.	5.7	89
43	MgAl2O4 spinel powders from oxide one pot synthesis (OOPS) process for ceramic humidity sensors. Journal of the European Ceramic Society, 2000, 20, 91-97.	5 . 7	87
44	Catalytic methods for the synthesis of oligosilazanes. Organometallics, 1986, 5, 2081-2086.	2.3	83
45	Synthesis and Characterization of Liquid Crystalline Silsesquioxanes. Chemistry of Materials, 2001, 13, 3653-3662.	6.7	83
46	Synthesis of Yttrium Aluminum Garnet from Yttrium and Aluminum Isobutyrate Precursors. Journal of the American Ceramic Society, 1996, 79, 385-394.	3.8	74
47	Silsesquioxane Barrier Materials. Macromolecules, 2007, 40, 555-562.	4.8	73
48	A New Y3Al5O12 Phase Produced by Liquid-Feed Flame Spray Pyrolysis (LF-FSP). Advanced Materials, 2005, 17, 830-833.	21.0	72
49	Synthesis and Photophysical Properties of Stilbeneoctasilsesquioxanes. Emission Behavior Coupled with Theoretical Modeling Studies Suggest a 3-D Excited State Involving the Silica Core. Journal of the American Chemical Society, 2010, 132, 3708-3722.	13.7	71
50	Flame Spray Pyrolysis of Precursors as a Route to Nanoâ€mullite Powder: Powder Characterization and Sintering Behavior. Journal of the American Ceramic Society, 2001, 84, 951-961.	3.8	69
51	Reactivity of metal radicals generated photochemically. Effects of solvent and of trapping agent concentrations on quantum yields for photolysis of hexacarbonylbis(.picyclopentadienyl)ditungsten(I), [.piCpW(CO)3]2. Inorganic Chemistry, 1977, 16, 388-391.	4.0	68
52	Metallic palladium, the actual catalyst in Lindlar and Rosenmund reductions?. Journal of Organic Chemistry, 1983, 48, 4436-4438.	3. 2	65
53	Spherical, Polyfunctional Molecules Using Poly(bromophenylsilsesquioxane)s as Nanoconstruction Sites. Macromolecules, 2005, 38, 4655-4660.	4.8	65
54	Liquid-Feed Flame Spray Pyrolysis as a Method of Producing Mixed-Metal Oxide Nanopowders of Potential Interest as Catalytic Materials. Nanopowders along the NiOâ^'Al2O3Tie Line Including (NiO)0.22(Al2O3)0.78, a New Inverse Spinel Composition. Chemistry of Materials, 2006, 18, 731-739.	6.7	65

#	Article	IF	Citations
55	Porous Networks Assembled from Octaphenylsilsesquioxane Building Blocks. Macromolecules, 2010, 43, 6995-7000.	4.8	65
56	Catalysis of the aminomethylation reaction. Enhanced catalytic activity with mixed-metal catalysts. Applications of the water-gas shift reaction. 5. Journal of Organic Chemistry, 1980, 45, 3370-3372.	3.2	64
57	Molecular structure of tris(diphenylacetylene)tungsten monocarbonyl. Journal of the American Chemical Society, 1972, 94, 1402-1403.	13.7	63
58	Modeling heterogeneous catalysts with homogeneous catalysts. 2. Modeling catalytic hydrodenitrogenation. Journal of the American Chemical Society, 1982, 104, 1763-1765.	13.7	60
59	Continuous-wave ultraviolet laser action in strongly scattering Nd-doped alumina. Optics Letters, 2002, 27, 394.	3.3	60
60	Robust Polyaromatic Octasilsesquioxanes from Polybromophenylsilsesquioxanes, BrxOPS, via Suzuki Coupling. Macromolecules, 2005, 38, 4661-4665.	4.8	60
61	Transalkylation reaction. Homogeneous catalytic formation of carbon-nitrogen bonds. Journal of the American Chemical Society, 1985, 107, 361-369.	13.7	59
62	High-Throughput Screening of Nanoparticle Catalysts Made by Flame Spray Pyrolysis as Hydrocarbon/NO Oxidation Catalysts. Journal of the American Chemical Society, 2009, 131, 9207-9219.	13.7	59
63	The Evolutionary Process during Pyrolytic Transformation of Poly(N-methylsilazane) from a Preceramic Polymer into an Amorphous Silicon Nitride/Carbon Composite. Journal of the American Ceramic Society, 1995, 78, 137-145.	3.8	58
64	Palladium- and platinum-catalyzed coupling reactions of allyloxy aromatics with hydridosilanes and hydridosiloxanes: Novel liquid crystalline/organosilane materials. Journal of Polymer Science Part A, 1994, 32, 3069-3089.	2.3	56
65	Low-pressure, palladium-catalyzed N,N'-diarylurea synthesis from nitro compounds, amines, and carbon monoxide. Journal of Organic Chemistry, 1975, 40, 2819-2822.	3.2	55
66	Synthesis and high temperature chemistry of methylsilsesquioxane polymers produced by titanium-catalyzed redistribution of methylhydridooligo- and -polysiloxanes. Chemistry of Materials, 1990, 2, 464-472.	6.7	55
67	Neutral Alkoxysilanes from Silica. Journal of the American Chemical Society, 2000, 122, 10063-10072.	13.7	54
68	Yttrium Aluminum Garnet Fibers from Metalloorganic Precursors. Journal of the American Ceramic Society, 1998, 81, 629-645.	3.8	53
69	The selective dissolution of rice hull ash to form [OSiO1.5]8[R4N]8(R = Me, CH2CH2OH) octasilicates. Basic nanobuilding blocks and possible models of intermediates formed during biosilicification processes. Journal of Materials Chemistry, 2005, 15, 2114.	6.7	53
70	Materials that can replace liquid electrolytes in Li batteries: Superionic conductivities in Li1.7Al0.3Ti1.7Si0.4P2.6O12. Processing combustion synthesized nanopowders to free standing thin films. Journal of Power Sources, 2014, 269, 577-588.	7.8	53
71	Ab Initio Calculation of the Electronic Absorption of Functionalized Octahedral Silsesquioxanes via Time-Dependent Density Functional Theory with Range-Separated Hybrid Functionals. Journal of Physical Chemistry A, 2012, 116, 1137-1145.	2.5	52
72	A low cost, low energy route to solar grade silicon from rice hull ash (RHA), a sustainable source. Green Chemistry, 2015, 17, 3931-3940.	9.0	51

#	Article	IF	CITATIONS
73	Inelastic electron tunneling spectroscopy of carbon monoxide chemisorbed on alumina-supported transition metals. Journal of the American Chemical Society, 1976, 98, 6064-6065.	13.7	50
74	Synthesis of Ultrafine $\hat{l}^2\hat{a}\in A$ lumina Powders via Flame Spray Pyrolysis of Polymeric Precursors. Journal of the American Ceramic Society, 1998, 81, 1477-1486.	3.8	50
75	Liquid-Feed Flame Spray Pyrolysis of Nanopowders in the Aluminaâ^'Titania System. Chemistry of Materials, 2004, 16, 2336-2343.	6.7	49
76	Synthesis of amino-containing oligophenylsilsesquioxanes. Polymer, 2005, 46, 4514-4524.	3.8	49
77	Monoterpene syntheses via a palladium catalyzed isoprene dimerization. Journal of Organic Chemistry, 1976, 41, 3455-3460.	3.2	47
78	Tailoring the Global Properties of Nanocomposites. Epoxy Resins with Very Low Coefficients of Thermal Expansion. Macromolecules, 2006, 39, 5167-5169.	4.8	46
79	Perfect and nearly perfect silsesquioxane (SQs) nanoconstruction sites and Janus SQs. Journal of Sol-Gel Science and Technology, 2008, 46, 335-347.	2.4	46
80	Beads on a Chain (BOC) Polymers Formed from the Reaction of NH ₂ PhSiO _{1.5} _{1.5} <	4.8	44
81	Mixtures ($\langle i \rangle \times \langle j \rangle = 2 \hat{a} \in 4$) with the Diglycidyl Ether of Bisphenol A. Macromolecules, 2011, 44, 7263-7272. 3-D Molecular Mixtures of Catalytically Functionalized [vinylSiO $\langle sub \rangle 1.5 \langle sub \rangle 1.5 \langle$	6.7	43
82	Applications of the water-gas shift reaction. 2. Catalytic exchange of deuterium for hydrogen at saturated carbon. Journal of the American Chemical Society, 1978, 100, 6527-6528.	13.7	42
83	Synthesis, functionalization and properties of incompletely condensed "half cube―silsesquioxanes as a potential route to nanoscale Janus particles. Comptes Rendus Chimie, 2010, 13, 270-281.	0.5	42
84	Homogeneous catalytic formation of carbon-nitrogen bonds. 2. Catalytic activation of the silicon-nitrogen bond. Journal of Organic Chemistry, 1983, 48, 2539-2543.	3.2	41
85	Synthesis of a Double Alkoxide Precursor to Spinel (MgAl2O4) Directly from Al(OH)3, MgO, and Triethanolamine and Its Pyrolytic Transformation to Spinel. Chemistry of Materials, 1996, 8, 2850-2857.	6.7	41
86	Cobalt(III) complex catalyzed hydrolysis of phosphorus esters. Inorganic Chemistry, 1984, 23, 1870-1876.	4.0	40
87	Finding Spinel in All the Wrong Places. Advanced Materials, 2008, 20, 1373-1375.	21.0	40
88	D _{5h} [PhSiO _{1.5}] ₁₀ synthesis via F ^{\hat{a}^*} catalyzed rearrangement of [PhSiO _{1.5}] _n . An experimental/computational analysis of likely reaction pathways. Dalton Transactions, 2016, 45, 1025-1039.	3.3	40
89	Ba[Si(OCH2CH2O)3], a Hexaalkoxysilicate Synthesized from SiO2. Angewandte Chemie International Edition in English, 1993, 32, 287-289.	4.4	39
90	Avoiding Carbothermal Reduction: Distillation of Alkoxysilanes from Biogenic, Green, and Sustainable Sources. Angewandte Chemie - International Edition, 2016, 55, 1065-1069.	13.8	39

#	Article	IF	CITATIONS
91	Superionically conducting $\hat{1}^2\hat{a}\in \hat{2}\hat{a}\in \hat{2}$ -Al ₂ O ₃ thin films processed using flame synthesized nanopowders. Journal of Materials Chemistry A, 2018, 6, 12411-12419.	10.3	39
92	One-Step Synthesis of Coreâ^'Shell (Ce _{0.7} Zr _{0.3} O ₂) _{<i>x</i>Valorous (Al₂O₃)_{Nanopowders via Liquid-Feed Flame Spray Pyrolysis (LF-FSP). Journal of the American Chemical Society, 2009, 131, 9220-9229.}}	ub	۰xৣ<{i>
93	Synthesis of Metastable Phases in the Magnesium Spinelâ^'Alumina System. Chemistry of Materials, 2008, 20, 553-558.	6.7	37
94	Cubic Silsesquioxanes as a Green, Highâ€Performance Mold Material for Nanoimprint Lithography. Advanced Materials, 2011, 23, 414-420.	21.0	37
95	Beads on a Chain (BoC) Phenylsilsesquioxane (SQ) Polymers via F ^{â€"} Catalyzed Rearrangements and ADMET or Reverse Heck Cross-coupling Reactions: Through Chain, Extended Conjugation in 3-D with Potential for Dendronization. Macromolecules, 2013, 46, 7591-7604.	4.8	37
96	Catalytic reactions of pyridine with carbon monoxide and water. Reduction of carbon monoxide to hydrocarbon. Applications of the water-gas shift reaction. Journal of Organic Chemistry, 1979, 44, 4964-4966.	3.2	36
97	Synthesis of $\hat{l}\pm,\hat{l}\%$ -bis(diphenylphosphino)alkane and $\hat{l}\pm,\hat{l}\%$ -bis(diphenylphosphino)(poly)ether ligands and complexes of rhodium(I). Inorganica Chimica Acta, 1985, 97, 143-150.	2.4	36
98	Transannular interactions of the silyl center with distant keto groups in the mass spectra of medium-sized organosilicon heterocycles. Improved synthetic routes to six-, seven-, and eight-membered silicon ring systems. Journal of Organic Chemistry, 1971, 36, 4060-4068.	3.2	34
99	Catalytic synthesis of oligosilazanes part 2. Journal of Molecular Catalysis, 1988, 48, 183-197.	1.2	34
100	A Processable Mullite Precursor Prepared by Reacting Silica and Aluminum Hydroxide with Triethanolamine in Ethylene Glycol: Structural Evolution on Pyrolysis. Journal of the American Ceramic Society, 1997, 80, 2597-2606.	3.8	33
101	Systematic synthesis of mixed-metal oxides in NiO–Co3O4, NiO–MoO3, and NiO–CuO systems via liquid-feed flame spray pyrolysis. Journal of Materials Chemistry, 2008, 18, 3249.	6.7	33
102	Facile Approach to Recycling Highly Cross-Linked Thermoset Silicone Resins under Ambient Conditions. ACS Omega, 2019, 4, 3782-3789.	3.5	32
103	Coreâ^'shell Nanostructured Nanopowders along (CeO _{<i>x</i>} <i>x</i> Tie-Linby Liquid-Feed Flame Spray Pyrolysis (LF-FSP). Chemistry of Materials, 2008, 20, 5154-5162.	166.7	31
104	Using CoS cathode materials with 3D hierarchical porosity and an ionic liquid (IL) as an electrolyte additive for high capacity rechargeable magnesium batteries. Journal of Materials Chemistry A, 2019, 7, 18880-18888.	10.3	31
105	\hat{l} ±-Silicon carbide/ \hat{l}^2 -silicon carbide particulate composites via polymer infiltration and pyrolysis (PIP) processing using polymethylsilane. Journal of the European Ceramic Society, 2000, 20, 441-451.	5.7	30
106	Preparation of highly functionalized 3,4-disubstituted cyclobutene-1,2-diones using functionalized zinc-copper organometallics. Tetrahedron Letters, 1992, 33, 7515-7518.	1.4	29
107	Pentacoordinate Silicon Complexes as Precursors to Silicate Glasses and Ceramics. Journal of the American Ceramic Society, 1994, 77, 875-882.	3.8	29
108	Processable aluminosilicate alkoxide precursors from metal oxides and hydroxides. The oxide one-pot synthesis process. Journal of Materials Chemistry, 1996, 6, 1441.	6.7	29

#	Article	IF	CITATIONS
109	Synthesis, characterization and photophysical properties of polyfunctional phenylsilsesquioxanes: [o-RPhSiO1.5]8, [2,5-R2PhSiO1.5]8, and [R3PhSiO1.5]8. compounds with the highest number of functional units/unit volume. Journal of Materials Chemistry, 2011, 21, 11177.	6.7	29
110	Ce-Substituted Nanograin Na ₃ Zr ₂ Si ₂ PO ₁₂ Prepared by LF-FSP as Sodium-Ion Conductors. ACS Applied Materials & Sodium-Ion Con	8.0	29
111	Octaalkynylsilsesquioxanes, Nano Sea Urchin Molecular Building Blocks for 3-D-Nanostructures. Macromolecules, 2008, 41, 8047-8052.	4.8	28
112	Fluoride catalyzed rearrangements of polysilsesquioxanes, mixed Me, vinyl T ₈ , Me, vinyl T ₁₀ and T ₁₂ cages. Applied Organometallic Chemistry, 2010, 24, 551-557.	3.5	28
113	New Aminophenylsilsesquioxanesâ€"Synthesis, Properties, and Epoxy Nanocomposites. Australian Journal of Chemistry, 2006, 59, 564.	0.9	26
114	Reactions of (Ï€-C5H5)W(CO)3H with dimethylacetylenedicarboxylate. Formation of dinuclear and metal hydride insertion products. Journal of Organometallic Chemistry, 1977, 124, 29-35.	1.8	25
115	Titanium Nitride/Carbon Coatings on Graphite Fibers. Journal of the American Ceramic Society, 1997, 80, 705-716.	3.8	25
116	Completely discontinuous organic/ inorganic hybrid nanocomposites by self-curing of nanobuilding blocks constructed from reactions of [HMe2SiOSiO1.5]8 with vinylcyclohexene. Polymer International, 2007, 56, 1378-1391.	3.1	25
117	Conjugated Copolymers That Shouldn't Be. Angewandte Chemie - International Edition, 2021, 60, 11115-11119.	13.8	25
118	Modeling heterogeneous catalysts with homogeneous catalysts. Comparison of catalytic exchange of deuterium for hydrogen at the .alpha. and .beta. positions of tertiary amines by using either palladium black or dodecacarbonyltriruthenium. Journal of the American Chemical Society, 1981, 103, 2461-2463.	13.7	24
119	Ring-Opening Polymerization of Epoxy End-Terminated Polyethylene Oxide (PEO) as a Route to Cross-Linked Materials with Exceptional Swelling Behavior. Macromolecules, 2004, 37, 4525-4532.	4.8	24
120	Durable and Hydrophobic Organic–Inorganic Hybrid Coatings via Fluoride Rearrangement of Phenyl T ₁₂ Silsesquioxane and Siloxanes. ACS Applied Materials & Interfaces, 2017, 9, 8378-8383.	8.0	23
121	FURTHER STUDIES ON HYDROFORMYLATION AND HYDROHYDROXYMETHYLATION WITH CO AND H2O. APPLICATIONS OF THE WATER-GAS SHIFT REACTION. 3. Annals of the New York Academy of Sciences, 1980, 333, 124-140.	3.8	22
122	Synthesis of Oxynitride Powders via Fluidized-Bed Ammonolysis, Part I: Large, Porous, Silica Particles. Journal of the American Ceramic Society, 1996, 79, 2865-2877.	3.8	22
123	Processing Aluminum Nitrideâ€Silicon Carbide Composites via Polymer Infiltration and Pyrolysis of Polymethylsilane, a Precursor to Stoichiometric Silicon Carbide. Journal of the American Ceramic Society, 1999, 82, 857-866.	3.8	22
124	Formation and structure of tris(alumatranyloxy-i-propyl)amine directly from Al(OH)3 and triisopropanolamine. European Polymer Journal, 2001, 37, 1877-1885.	5.4	22
125	Surface modification of titania powder P25 with phosphate and phosphonic acids – Effect on thermal stability and photocatalytic activity. Journal of Colloid and Interface Science, 2013, 393, 335-339. Beads on a Chain (BoC) Polymers with Model Dendronized Beads. Copolymerization of	9.4	22
126	[(4-NH ₂ C ₆ H ₄ SiO _{1.5}) ₆ (IPhSiO _{1.5} and [(4-CH ₃ OC ₆ H ₄ SiO _{1.5}) ₆ (IPhSiO _{1.5} with 1,4-Diethynylbenzene (DEB) Gives Through-Chain, Extended 3-D Conjugation in the Excited State That Is an Average of the Corresponding Homopolymers. Macromolecules, 2013, 46, 7580-7590.		

#	Article	IF	CITATIONS
127	Preparation of Nb-doped TiO2 nanopowder by liquid-feed spray pyrolysis followed by ammonia annealing for tunable visible-light absorption and inhibition of photocatalytic activity. Ceramics International, 2020, 46, 1314-1322.	4.8	22
128	Some further observations on polymethylsilane as a precursor for silicon carbide. Applied Organometallic Chemistry, 1994, 8, 95-100.	3.5	21
129	Ultraviolet emission and Fano resonance in doped nano-alumina. Journal of Applied Physics, 2007, 101, 053534.	2.5	21
130	Crystalline Hybrid Polyphenylene Macromolecules from Octaalkynylsilsesquioxanes, Crystal Structures, and a Potential Route to 3-D Graphenes. Macromolecules, 2011, 44, 3425-3435.	4.8	20
131	Synthesis and characterization of organic/inorganic epoxy nanocomposites from poly(aminopropyl/phenyl)silsesquioxanes. Journal of Applied Polymer Science, 2013, 128, 3601-3608.	2.6	20
132	Synthesis of soluble aluminium carboxylates directly from aluminium hydroxide. Journal of Materials Chemistry, 2000, 10, 2097-2104.	6.7	19
133	Halogen Bonding Motifs in Polyhedral Phenylsilsesquioxanes: Effects of Systematic Variations in Geometry or Substitution. Crystal Growth and Design, 2011, 11, 4360-4367.	3.0	19
134	Facile, one-pot synthesis of Pd@CeO2 core@shell nanoparticles in aqueous environment by controlled hydrolysis of metalloorganic cerium precursor. Materials Letters, 2017, 206, 105-108.	2.6	19
135	Solid Electrolytes for Li–S Batteries: Solid Solutions of Poly(ethylene oxide) with LixPON- and LixSiPON-Based Polymers. ACS Applied Materials & Interfaces, 2020, 12, 30353-30364.	8.0	19
136	Why do the [PhSiO _{1.5}] _{8,10,12} cages self-brominate primarily in the ortho position? Modeling reveals a strong cage influence on the mechanism. Physical Chemistry Chemical Physics, 2014, 16, 25760-25764.	2.8	18
137	Silica depleted rice hull ash (SDRHA), an agricultural waste, as a high-performance hybrid lithium-ion capacitor. Green Chemistry, 2020, 22, 4656-4668.	9.0	18
138	Novel Fluoropolymer Functionalized Silsesquioxanes for Nanoscale Architecture of Hybrid Composites. Journal of Nanoscience and Nanotechnology, 2004, 4, 250-253.	0.9	18
139	Superconducting fibers from organometallic precursors. Part II: Chemistry and low temperature processing 1. Journal of Materials Research, 1991, 6, 895-907.	2.6	17
140	Simple, low-cost synthetic route to potentially polymerizable silatranes. New Journal of Chemistry, 1999, 23, 1181-1186.	2.8	17
141	Synthesis and Characterization of Mixed-Metal Oxide Nanopowders Along the CoOx-Al2O3 Tie Line Using Liquid-Feed Flame Spray Pyrolysis. Journal of the American Ceramic Society, 2006, 89, 060628061644004-???.	3.8	17
142	Photophysical Properties of Functionalized Double Decker Phenylsilsesquioxane Macromonomers: [PhSiO _{1.5}] ₈ [OSiMe ₂] ₂ and [PhSiO _{1.58} [O _{0.5} SiMe ₃] ₄ . Cage-Centered Lowest Unoccupied Molecular Orbitals Form Even When Two Cage Edge Bridges Are Removed, Verified	4.8	17
143	by Modeling and Ultrafast Magnetic Light Scattering Experiments. Macromolecules, 2019, 52, 7413-7422. LiAlO ₂ /LiAl ₅ O ₈ Membranes Derived from Flame-Synthesized Nanopowders as a Potential Electrolyte and Coating Material for All-Solid-State Batteries. ACS Applied Materials & Description of the Applied Material (1998) and the Applied Materials (1998) and the Applie	8.0	17
144	Spinel fibers from carboxylate precursor. Journal of the European Ceramic Society, 1999, 19, 1949-1959.	5 . 7	16

#	Article	IF	CITATIONS
145	Homogeneous rhodium catalyzed hydrogenation of benzaldehyde: kinetic evidence in favor of cluster catalysis. Journal of Molecular Catalysis, 1982, 15, 383-389.	1.2	15
146	The Bottom Up Approach is Not Always the Best Processing Method: Dense αâ€Al ₂ O ₄ Composites. Advanced Functional Materials, 2014, 24, 3392-3398.	14.9	15
147	Group II Tris(glycolato)silicates as Precursors to Silicate Glasses and Ceramics. Journal of the American Ceramic Society, 1995, 78, 529-538.	3.8	14
148	Pressureless Sintering <i>t</i> â€zirconia@δâ€Al ₂ O ₃ (54 mol%) Core–Shell Nanopowders at 1120°C Provides Dense <i>t</i> â€Zirconiaâ€Toughened αâ€Al ₂ O ₃ Nanocomposites. Journal of the American Ceramic Society, 2010, 93, 709-715.	3.8	14
149	[PhSiO1.5]8 promotes self-bromination to produce [o-BrPhSiO1.5]8: further bromination gives crystalline [2,5-Br2PhSiO1.5]8 with a density of 2.32 g cmâ^3 and a calculated refractive index of 1.7 or the tetraicosa bromo compound [Br3PhSiO1.5]8. Journal of Materials Chemistry, 2011, 21, 11167.	6.7	14
150	Microporous inorganic/organic hybrids via oxysilylation of a cubic symmetry nanobuilding block [(HMe ₂ SiOSiO _{1.5}) ₈] with R <i>_{_{x&l}}</i>	/slib>&l	lt;/i>.
151	In Situ Methylation Transforms Aggregationâ€Caused Quenching into Aggregationâ€Induced Emission: Functional Porous Silsesquioxaneâ€Based Composites with Enhanced Nearâ€Infrared Emission. ChemPlusChem, 2019, 84, 1630-1637.	2.8	14
152	Photophysical Properties of Partially Functionalized Phenylsilsesquioxane: [RSiO _{1.5}] ₇ [Me/nPrSiO _{1.5}] and [RSiO _{1.5}] ₃ (R =) Tj ETQq0 0 0 rgE	3 ¼/® verlo	c l e410 Tf 50
153	2019, 52, 4008-4019. Li+ assisted fast and stable Mg2+ reversible storage in cobalt sulfide cathodes for high performance magnesium/lithium hybrid-ion batteries. Energy Storage Materials, 2022, 46, 583-593.	18.0	14
154	New Catalytic Routes to Preceramic Polymers: Ceramic Precursors to Silicon Nitride and Silicon-Carbide Nitride. Materials Research Society Symposia Proceedings, 1988, 121, 489.	0.1	13
155	Extrusion of YAG Tubes Shows that Bottomâ€up Processing is Not Always Optimal. Advanced Functional Materials, 2014, 24, 1125-1132.	14.9	13
156	Unconventional Conjugation via vinylMeSi(Oâ^') ₂ Siloxane Bridges May Imbue Semiconducting Properties in [vinyl(Me)SiO(PhSiO _{1.5}) ₈ OSi(Me)vinyl-Ar] Double-Decker Copolymers. ACS Applied Polymer Materials, 2020, 2, 3894-3907.	4.4	13
157	Design, Synthesis, and Characterization of Polymer Precursors to Li <i>_x</i> PON and Li <i>_x</i> SiPON Glasses: Materials That Enable All-Solid-State Batteries (ASBs). Macromolecules, 2020, 53, 2702-2712.	4.8	13
158	Fabrication of Yttrium Aluminate Fibers. , 0, , 639-650.		13
159	Liquid-feed flame spray pyrolysis derived nanopowders (NPs) as a route to electrically conducting calcium aluminate (12CaO.7Al2O3) films. Journal of the European Ceramic Society, 2019, 39, 1263-1270.	5.7	12
160	Photocatalytic plateâ€like La 2 Ti 2 O 7 nanoparticles synthesized via liquidâ€feed flame spray pyrolysis (LFâ€FSP) of metalloâ€organic precursors. Journal of the American Ceramic Society, 2020, 103, 4832-4839.	3.8	12
161	Pure Silicon Carbide Fibers from Polymethylsilane. Ceramic Engineering and Science Proceedings, 0, , 152-161.	0.1	12
162	Theoretical Process Development for Freeze-Drying Spray-Frozen Aerosols. Journal of the American Ceramic Society, 1992, 75, 1223-1228.	3.8	11

#	Article	IF	Citations
163	Characterization of Epoxy-Functionalized Silsesquioxanes as Potential Underfill Encapsulants. Materials Research Society Symposia Proceedings, 1998, 519, 15.	0.1	11
164	BaSi(OCH ₂ CH ₂ O) ₃ l, ein aus Siliciumdioxid synthetisiertes Hexaalkoxysilicat. Angewandte Chemie, 1993, 105, 283-285.	2.0	10
165	Preceramic Polymer Route to Amorphous and Crystalline Potassium Aluminosilicate Powders and Their Electrorheological Properties. Journal of the American Ceramic Society, 1997, 80, 1436-1446.	3.8	10
166	Synthesis and Characterization of Nanobuilding Blocks [<i>o-</i> RStyrPhSiO _{1.5}] _{10,12} (R = Me, MeO, NBoc, and CN). Unexpected Photophysical Properties Arising from Apparent Asymmetric Cage Functionalization as Supported by Modeling Studies. Journal of Physical Chemistry C, 2015, 119, 15846-15858.	3.1	10
167	Escaping the Tyranny of Carbothermal Reduction: Fumed Silica from Sustainable, Green Sources without First Having to Make SiCl ₄ . Chemistry - A European Journal, 2016, 22, 2257-2260.	3.3	10
168	The Corrosion Resistance of an Aluminum Alloy Coated with Polysilazane-Derived Ceramics. Corrosion, 1989, 45, 503-506.	1.1	9
169	Superconducting fibers from organometallic precursors: Part III. Pyrolytic processing of precursor fibers. Journal of Materials Research, 1993, 8, 1777-1790.	2.6	9
170	Preparation, Characterization, and Modeling of \hat{l}_{\pm} -Zirconium Phosphonates with Ether-Functional Surfaces. Chemistry of Materials, 2008, 20, 5491-5499.	6.7	9
171	Roll your own – nano-nanocomposite capacitors. Journal of Materials Chemistry A, 2014, 2, 3766.	10.3	9
172	Avoiding Carbothermal Reduction: Distillation of Alkoxysilanes from Biogenic, Green, and Sustainable Sources. Angewandte Chemie, 2016, 128, 1077-1081.	2.0	9
173	Nucleophilic Attack of R-lithium at Tetrahedral Silicon in Alkoxysilanes. An Alternate Mechanism. Bulletin of the Chemical Society of Japan, 2016, 89, 705-725.	3.2	9
174	Resilience improvement of an isotactic polypropylene-g-maleic anhydride by crosslinking using polyether triamine agents. Polymer, 2019, 179, 121655.	3.8	9
175	Li _x SiON (<i>x</i> = 2, 4, 6): a novel solid electrolyte system derived from agricultural waste. Green Chemistry, 2020, 22, 7491-7505.	9.0	9
176	An Approach to Epoxy Resins: Oxysilylation of Epoxides. Macromolecules, 2020, 53, 2249-2263.	4.8	9
177	Adjusting SiO ₂ : C mole ratios in rice hull ash (RHA) to control carbothermal reduction to nanostructured SiC, Si ₃ N ₄ or Si ₂ N ₂ O composites. Green Chemistry, 2021, 23, 7751-7762.	9.0	9
178	Turning Trash into Treasure: MXene with Intrinsic LiF Solid Electrolyte Interfaces Performs Better and Better during Battery Cycling. Advanced Materials Technologies, 2021, 6, 2000882.	5.8	9
179	Chemistry of hydrogen sulphide under coal liquefaction conditions. Fuel, 1985, 64, 911-915.	6.4	8
180	YTTRIUM ALUMINATE CERAMIC FIBERS VIA PRE-CERAMIC POLYMER AND SOL-GEL ROUTES. Particulate Science and Technology, 1992, 10, 121-132.	2.1	8

#	Article	IF	Citations
181	Combinatorial Nanopowder Synthesis Along the ZnO–Al ₂ O ₃ Tie Line Using Liquidâ€Feed Flame Spray Pyrolysis. Journal of the American Ceramic Society, 2011, 94, 3308-3318.	3.8	8
182	Photocatalytic La4Ti3O12 nanoparticles fabricated by liquid-feed flame spray pyrolysis. Ceramics International, 2020, 46, 18656-18660.	4.8	8
183	Organic/Inorganic Molecular Hybrid Materials From Cubic Silsesquioxanes. Materials Research Society Symposia Proceedings, 1999, 576, 3.	0.1	7
184	Effects of Ph ₁₂ SQ on the thermal stability and mechanical properties of high temperature vulcanized (HTV) silicone rubber. IEEE Transactions on Dielectrics and Electrical Insulation, 2014, 21, 244-252.	2.9	7
185	Catalyst nucleation and carbon nanotube growth from flame-synthesized Co-Al-O nanopowders at ten-second time scale. Carbon, 2017, 114, 31-38.	10.3	7
186	Polymer Precursor Derived Li _{<i>×</i>} PON Electrolytes: Toward Li–S Batteries. ACS Applied Materials &	8.0	7
187	Improved Electrochemical Properties of Li ₄ Ti ₅ O ₁₂ Nanopowders (NPs) via Addition of LiAlO ₂ and Li ₆ SiON Polymer Electrolytes, Derived from Agricultural Waste. ACS Applied Energy Materials, 2021, 4, 1894-1905.	5.1	7
188	A reactive extrusion process for the free radical grafting of silanes onto polypropylene: Effects of processing conditions and properties of water crossâ€inked silaneâ€grafted polypropylene. Polymer Engineering and Science, 2013, 53, 1571-1581.	3.1	6
189	Cubic silsesquioxanes as tunable highâ€performance coating materials. Applied Organometallic Chemistry, 2013, 27, 652-659.	3.5	6
190	Using amorphous CoS hollow nanocages as cathodes for high-performance magnesium-lithium dual-ion batteries. Applied Surface Science, 2022, 598, 153768.	6.1	6
191	Sodium-based solid electrolytes and interfacial stability. Towards solid-state sodium batteries. Materials Today Communications, 2022, 32, 104009.	1.9	6
192	Bulk ruthenium as an HDN catalyst. Energy & Ener	5.1	5
193	Ring-opening polymerization of epoxy end-terminated poly(ethylene oxide) as a route to highly crosslinked materials with exceptional swelling behavior (II). Polymer International, 2007, 56, 1006-1015.	3.1	5
194	Synthesis of acetoxyphenyl―and hydroxyphenyl―erminated polyfunctional T ₈ , T ₁₀ , T ₁₂ silsesquioxanes and initial studies on their use in the formation of highly crosslinked polyesters. Applied Organometallic Chemistry, 2013, 27, .	3.5	5
195	[PhSiO _{1.5}] _{8,10,12} as nanoreactors for non-enzymatic introduction of ortho, meta or para-hydroxyl groups to aromatic molecules. Dalton Transactions, 2017, 46, 8797-8808.	3.3	5
196	High Surface Area, Thermally Stable, Hydrophobic, Microporous, Rigid Gels Generated at Ambient from MeSi(OEt) ₃ /(EtO) ₃ SiCH ₂ CH ₂ Si(OEt) ₃ 3Mixtures by F ^{â°'} â€Catalyzed Hydrolysis. Chemistry - A European Journal, 2018, 24, 274-280.	3.3	5
197	Processing thin (<10 µm), dense, flexible α-Al ₂ 0 ₃ films from nanopowders. Journal of the Ceramic Society of Japan, 2019, 127, 81-89.	1.1	5
198	Processing combustion synthesized Mg0.5Zr2(PO4)3 nanopowders to thin films as potential solid electrolytes. Electrochemistry Communications, 2020, 116, 106753.	4.7	5

#	Article	IF	Citations
199	Silicon carbide (SiC) derived from agricultural waste potentially competitive with silicon anodes. Green Chemistry, 2022, 24, 4061-4070.	9.0	5
200	Li+ additive accelerated structural transformation of MoS2 cathodes for performance-enhancing rechargeable Mg2+ batteries. Materials Today Energy, 2022, 27, 101047.	4.7	5
201	Synthesis and Characterization of Rigid-Rod Polymers with Silsesquioxanes in the Main Chain. Macromolecules, 2022, 55, 5403-5411.	4.8	5
202	Processable Oligomeric and Polymeric Precursors to Silicates Prepared Directly from SiO2, Ethylene Glycol and Base Materials Research Society Symposia Proceedings, 1991, 249, 81.	0.1	4
203	Catalytic Synthesis of Polymethylsilsesquioxanes. Advances in Chemistry Series, 1992, , 553-563.	0.6	4
204	Thermotropic and Lyotropic Copolymers of Bis(Dioxyphenyl) Silanes. Molecular Crystals and Liquid Crystals, 1993, 225, 153-165.	0.3	4
205	Facile thiol-ene reactions of vinyl T ₁₀ /T ₁₂ silsesquioxanes for controlled refractive indices for transparent fiber glass reinforced composites. Journal of the Ceramic Society of Japan, 2015, 123, 725-731.	1.1	4
206	Synthesis of Zn1â^'x Co x Al2O4 Spinel Nanoparticles by Liquid-Feed Flame Spray Pyrolysis: Ceramic Pigments Application. Jom, 2016, 68, 304-310.	1.9	4
207	Facile synthesis, microstructure and photophysical properties of core-shell nanostructured (SiCN)/BN nanocomposites. Scientific Reports, 2017, 7, 39866.	3.3	4
208	Bottomâ€up vs reactive sintering of Al 2 O 3 –YAG–YSZ composites via one or threeâ€phase nanoparticles (NPs). Bottomâ€up processing wins this time. Journal of the American Ceramic Society, 2017, 100, 2429-2438.	3.8	4
209	Ultrafast Excited-State Dynamics of Partially and Fully Functionalized Silsesquioxanes. Journal of Physical Chemistry C, 2019, 123, 5048-5060.	3.1	4
210	The photochemical synthesis of (cyclooctatetraene) W(CO)4. Transition Metal Chemistry, 1980, 5, 158-159.	1.4	3
211	Bis(2,2'-(alkylimino)diethanolato)cobalt(III) chelates. Characterization of hydrolytic stability and interactions with acetylcholinesterase. Inorganic Chemistry, 1983, 22, 1247-1250.	4.0	3
212	Regular coal structure and conversion severity. Fuel, 1985, 64, 1323-1325.	6.4	3
213	Synthesis of inorganic polymers as glass precursors and for other uses: Pre-ceramic block or graft copolymers as potential precursors to composite materials. Applied Organometallic Chemistry, 1993, 7, 647-654.	3.5	3
214	Processing of Silicon Carbide Fiber with Controlled Stoichiometry Using Polymethylsilane, -[MeSiH]x Materials Research Society Symposia Proceedings, 1993, 327, 207.	0.1	3
215	Synthesis of β″-Alumina Polymer Precursor and Ultrafine β″-Alumina Composition Powders. ACS Symposium Series, 1997, , 146-156.	0.5	3
216	Solution processable nanocomposites based on silsesquioxane cores for use in organic light emitting diodes (OLEDs). Materials Research Society Symposia Proceedings, 2004, 847, 269.	0.1	3

#	Article	IF	CITATIONS
217	Structural and mechanical behavior of layered zirconium phosphonate as a distributed phase in polycaprolactone. Journal of Applied Polymer Science, 2009, 114, 993-1001.	2.6	3
218	Resettable Heterogeneous Catalyst: (Re)Generation and (Re)Adsorption of Ni Nanoparticles for Repeated Synthesis of Carbon Nanotubes on Ni–Al–O Thin Films. ACS Applied Nano Materials, 2018, 1, 5483-5492.	5.0	3
219	Processing thin, dense, transparent Ce:Y3Al5O12 films from flame made nanopowders for white light applications. Journal of the European Ceramic Society, 2019, 39, 4972-4978.	5.7	3
220	Chemical modification in and on single phase [NiO] _{0.5} [Al ₂ O ₃ 0.5 nanopowders produces "chocolate chipâ€ike― Ni _x @ [NiO] _{0.5â€x} [Al ₂ O ₃ (sub) 0.5 nanocomposite nanopowders. Journal of the American Ceramic Society, 2019, 102, 7145-7153.	3.8	3
221	Octa(3-chloroammoniumpropyl) octasilsesquioxane. , 1999, 13, 329.		3
222	LaTiO ₂ N nanopowders (NPs) with low surface defect density <i>via</i> nitridation of flame made NPs retaining simple perovskite structure. Dalton Transactions, 2022, 51, 1571-1579.	3.3	3
223	Low Temperature Routes to Cordierite-Like Ceramics using Chemical Processing. Materials Research Society Symposia Proceedings, 1991, 249, 107.	0.1	2
224	Sulfided heterogeneous, bimetallic Ru/Mo catalysts derived from mixtures of Ru3(CO)12 (or RuCl3) and a molybdenum heteropolyanion: The reactions of ethanol with tetrahydroquinoline. Applied Organometallic Chemistry, 1992, 6, 437-448.	3 . 5	2
225	Synthesis and Characterization of Silsesquioxane-Based Polymer Hybrids with Controlled Structure. Materials Research, 2002, 5, 247-252.	1.3	2
226	Silica dissolution as a route to octaanionic silsesquioxanes. Applied Organometallic Chemistry, 2006, 20, 393-398.	3.5	2
227	Chemical modification at and within nanopowders: Synthesis of coreâ€shell Al 2 O 3 @Ti ON nanopowders via nitriding nanoâ€(TiO 2) 0.43 (Al 2 O 3) 0.57 powders in NH 3. Journal of the American Ceramic Society, 2018, 101, 1441-1452.	3.8	2
228	t â€ZrO 2 toughened Al 2 O 3 freeâ€standing films and as oxidation mitigating thin films on silicon nitride via colloidal processing of flame made nanopowders (NPs). Journal of the American Ceramic Society, 2021, 104, 1281-1296.	3.8	2
229	Electrochemical Performance of LixSiON Polymer Electrolytes Derived from an Agriculture Waste Product, Rice Hull Ash. ACS Applied Polymer Materials, 2021, 3, 2144-2152.	4.4	2
230	Mg-Si-Al-O-N Glasses Prepared By Nitriding Cordierite Powders Derived from Polymer Precursors. Materials Research Society Symposia Proceedings, 1992, 287, 251.	0.1	1
231	Heteropolyanions as precursors to quinoline hydrogenation catalysts. Energy & Energy	5.1	1
232	NMR Characterization of Hybrid Systems Based on Functionalized Silsesquioxanes. Materials Research Society Symposia Proceedings, 1996, 435, 437.	0.1	1
233	Synthesis and Processing of SiC Based Materials Using Polymethylsilane. , 0, , 60-72.		1
234	Phase Evolution in the Transformation of Atomically Mixed Versus Ballâ€Milled Mixtures of Nanopowders in the Formation of Composite MO·3Al ₂ O ₃ Spinels: Bottomâ€Up Processing is Not Always Optimal. Journal of the American Ceramic Society, 2014, 97, 3442-3451.	3.8	1

RICHARD LAINE

#	Article	IF	CITATIONS
235	Synthesis and Characterization of a Trimetallic Double-Alkoxide Precursor to Potassium Aluminosilicate. ACS Symposium Series, 1997, , 134-145.	0.5	O
236	Preface for Hybrid Materials. Applied Organometallic Chemistry, 2013, 27, 619-619.	3.5	0
237	Processing YAG/l±â€Al 2 O 3 composites via reactive sintering Y 2 O 3 /Al 2 O 3 NP mixtures. A superior alternative to bottom up processing using atomically mixed YAlO x NPs. Journal of the American Ceramic Society, 2017, 100, 4500-4510.	3.8	0
238	Conjugated Copolymers That Shouldn't Be. Angewandte Chemie, 2021, 133, 11215-11219.	2.0	0
239	Reactions of metal chlorides with hexamethyldisilazane: Novel precursors to aluminum nitride and beyond. Journal of the American Ceramic Society, 2022, 105, 2474-2488.	3.8	0
240	Solid electrolytes for lithium-sulfur batteries. , 2022, , 17-47.		0