Ming Zhou

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9545323/publications.pdf

Version: 2024-02-01

		46984	53190
126	8,279	47	85
papers	citations	h-index	g-index
130 all docs	130 docs citations	130 times ranked	8748 citing authors

#	Article	IF	CITATIONS
1	Role of the tumor microenvironment in PD-L1/PD-1-mediated tumor immune escape. Molecular Cancer, $2019, 18, 10.$	7.9	810
2	Circular RNAs in human cancer. Molecular Cancer, 2017, 16, 25.	7.9	310
3	Warburg effect in chemosensitivity: Targeting lactate dehydrogenase-A re-sensitizes Taxol-resistant cancer cells to Taxol. Molecular Cancer, 2010, 9, 33.	7.9	307
4	Role of metabolism in cancer cell radioresistance and radiosensitization methods. Journal of Experimental and Clinical Cancer Research, 2018, 37, 87.	3 . 5	288
5	The role of microenvironment in tumor angiogenesis. Journal of Experimental and Clinical Cancer Research, 2020, 39, 204.	3 . 5	276
6	Upregulated long non-coding RNA AFAP1-AS1 expression is associated with progression and poor prognosis of nasopharyngeal carcinoma. Oncotarget, 2015, 6, 20404-20418.	0.8	210
7	The reverse Warburg effect is likely to be an Achilles' heel of cancer that can be exploited for cancer therapy. Oncotarget, 2017, 8, 57813-57825.	0.8	190
8	Analysis of status and countermeasures of cancer incidence and mortality in China. Science China Life Sciences, 2019, 62, 640-647.	2.3	190
9	Predictive biomarkers and mechanisms underlying resistance to PD1/PD-L1 blockade cancer immunotherapy. Molecular Cancer, 2020, 19, 19.	7.9	180
10	Mechanisms of vasculogenic mimicry in hypoxic tumor microenvironments. Molecular Cancer, 2021, 20, 7.	7.9	177
11	Chronic Stress Promotes Cancer Development. Frontiers in Oncology, 2020, 10, 1492.	1.3	157
12	Role of long non-coding RNAs in glucose metabolism in cancer. Molecular Cancer, 2017, 16, 130.	7.9	153
13	Long noncoding RNA AFAP1-AS1 acts as a competing endogenous RNA of miR-423-5p to facilitate nasopharyngeal carcinoma metastasis through regulating the Rho/Rac pathway. Journal of Experimental and Clinical Cancer Research, 2018, 37, 253.	3.5	148
14	microRNA-141 is involved in a nasopharyngeal carcinoma-related genes network. Carcinogenesis, 2010, 31, 559-566.	1.3	145
15	Long non-coding RNA PVT1 predicts poor prognosis and induces radioresistance by regulating DNA repair and cell apoptosis in nasopharyngeal carcinoma. Cell Death and Disease, 2018, 9, 235.	2.7	143
16	AFAP1-AS1, a long noncoding RNA upregulated in lung cancer and promotes invasion and metastasis. Tumor Biology, 2016, 37, 729-737.	0.8	132
17	Circulating miR-17, miR-20a, miR-29c, and miR-223 Combined as Non-Invasive Biomarkers in Nasopharyngeal Carcinoma. PLoS ONE, 2012, 7, e46367.	1.1	126
18	Effects of tumor metabolic microenvironment on regulatory T cells. Molecular Cancer, 2018, 17, 168.	7.9	119

#	Article	IF	CITATIONS
19	Epstein-Barr virus-encoded miR-BART6-3p inhibits cancer cell metastasis and invasion by targeting long non-coding RNA LOC553103. Cell Death and Disease, 2016, 7, e2353-e2353.	2.7	118
20	The Long Noncoding RNA MALAT-1 is A Novel Biomarker in Various Cancers: A Meta-analysis Based on the GEO Database and Literature. Journal of Cancer, 2016, 7, 991-1001.	1.2	104
21	EBV-miR-BART10-3p facilitates epithelial-mesenchymal transition and promotes metastasis of nasopharyngeal carcinoma by targeting BTRC. Oncotarget, 2015, 6, 41766-41782.	0.8	96
22	<i>circ<scp>MAN</scp>1A2</i> could serve as a novel serum biomarker for malignant tumors. Cancer Science, 2019, 110, 2180-2188.	1.7	96
23	LOC401317, a p53-Regulated Long Non-Coding RNA, Inhibits Cell Proliferation and Induces Apoptosis in the Nasopharyngeal Carcinoma Cell Line HNE2. PLoS ONE, 2014, 9, e110674.	1.1	93
24	Differential expression of Epstein-Barr virus-encoded RNA and several tumor-related genes in various types of nasopharyngeal epithelial lesions and nasopharyngeal carcinoma using tissue microarray analysis. Human Pathology, 2006, 37, 593-605.	1.1	85
25	HCP5 is a SMAD3-responsive long non-coding RNA that promotes lung adenocarcinoma metastasis via miR-203/SNAI axis. Theranostics, 2019, 9, 2460-2474.	4.6	85
26	The emerging role of Epstein-Barr virus encoded microRNAs in nasopharyngeal carcinoma. Journal of Cancer, 2018, 9, 2852-2864.	1.2	83
27	Interplay between Immune Checkpoint Proteins and Cellular Metabolism. Cancer Research, 2017, 77, 1245-1249.	0.4	82
28	The role of Wnt signaling pathway in tumor metabolic reprogramming. Journal of Cancer, 2019, 10, 3789-3797.	1.2	80
29	Single cell RNA-seq reveals the landscape of tumor and infiltrating immune cells in nasopharyngeal carcinoma. Cancer Letters, 2020, 477, 131-143.	3.2	80
30	Epstein-Barr virus encoded miR-BART11 promotes inflammation-induced carcinogenesis by targeting FOXP1. Oncotarget, 2016, 7, 36783-36799.	0.8	78
31	BRD7, a novel bromodomain gene, inhibits G1–S progression by transcriptionally regulating some important molecules involved in ras/MEK/ERK and Rb/E2F pathways. Journal of Cellular Physiology, 2004, 200, 89-98.	2.0	77
32	BRD7 suppresses the growth of Nasopharyngeal Carcinoma cells (HNE1) through negatively regulating β-catenin and ERK pathways. Molecular and Cellular Biochemistry, 2007, 303, 141-149.	1.4	75
33	Identification of genomic alterations in nasopharyngeal carcinoma and nasopharyngeal carcinoma-derived Epstein–Barr virus by whole-genome sequencing. Carcinogenesis, 2018, 39, 1517-1528.	1.3	74
34	BPIFB1 (LPLUNC1) inhibits migration and invasion of nasopharyngeal carcinoma by interacting with VTN and VIM. British Journal of Cancer, 2018, 118, 233-247.	2.9	73
35	Metabolic crosstalk in the tumor microenvironment regulates antitumor immunosuppression and immunotherapy resisitance. Cellular and Molecular Life Sciences, 2021, 78, 173-193.	2.4	72
36	Genome-Wide Analysis of 18 Epstein-Barr Viruses Isolated from Primary Nasopharyngeal Carcinoma Biopsy Specimens. Journal of Virology, 2017, 91, .	1.5	70

#	Article	IF	CITATIONS
37	High Expression of lncRNA AFAP1-AS1 Promotes the Progression of Colon Cancer and Predicts Poor Prognosis. Journal of Cancer, 2018, 9, 4677-4683.	1.2	69
38	Long noncoding RNA CAR10 promotes lung adenocarcinoma metastasis via miR-203/30/SNAI axis. Oncogene, 2019, 38, 3061-3076.	2.6	69
39	Long non-coding RNAs in cancer. Science China Life Sciences, 2012, 55, 1120-1124.	2.3	65
40	Epstein–Barr Virus–Encoded Circular RNA CircBART2.2 Promotes Immune Escape of Nasopharyngeal Carcinoma by Regulating PD-L1. Cancer Research, 2021, 81, 5074-5088.	0.4	65
41	Nasopharyngeal carcinoma: Advances in genomics and molecular genetics. Science China Life Sciences, 2011, 54, 966-975.	2.3	64
42	An integrative transcriptomic analysis reveals p53 regulated miRNA, mRNA, and lncRNA networks in nasopharyngeal carcinoma. Tumor Biology, 2016, 37, 3683-3695.	0.8	61
43	High Expression of LINC01420 indicates an unfavorable prognosis and modulates cell migration and invasion in nasopharyngeal carcinoma. Journal of Cancer, 2017, 8, 97-103.	1.2	59
44	p53/Lactate dehydrogenase A axis negatively regulates aerobic glycolysis and tumor progression in breast cancer expressing wildâ€type p53. Cancer Science, 2019, 110, 939-949.	1.7	56
45	LncRNA LINC00472 regulates cell stiffness and inhibits the migration and invasion of lung adenocarcinoma by binding to YBX1. Cell Death and Disease, 2020, 11, 945.	2.7	56
46	LncRNAs regulate cancer metastasis via binding to functional proteins. Oncotarget, 2018, 9, 1426-1443.	0.8	55
47	Long non-coding RNAs are involved in alternative splicing and promote cancer progression. British Journal of Cancer, 2022, 126, 1113-1124.	2.9	53
48	LncRNA AATBC regulates Pinin to promote metastasis in nasopharyngeal carcinoma. Molecular Oncology, 2020, 14, 2251-2270.	2.1	52
49	circSETD3 regulates MAPRE1 through miR-615-5p and miR-1538 sponges to promote migration and invasion in nasopharyngeal carcinoma. Oncogene, 2021, 40, 307-321.	2.6	51
50	EBV miRNAs BART11 and BART17-3p promote immune escape through the enhancer-mediated transcription of PD-L1. Nature Communications, 2022, 13, 866.	5.8	51
51	A common region of allelic loss on chromosome region 3p25.3–26.3 in nasopharyngeal carcinoma. Genes Chromosomes and Cancer, 1998, 23, 21-25.	1.5	50
52	Trend analysis of cancer incidence and mortality in China. Science China Life Sciences, 2017, 60, 1271-1275.	2.3	50
53	m6A Reader YTHDC2 Promotes Radiotherapy Resistance of Nasopharyngeal Carcinoma via Activating IGF1R/AKT/S6 Signaling Axis. Frontiers in Oncology, 2020, 10, 1166.	1.3	50
54	Long non-coding RNA LOC284454 promotes migration and invasion of nasopharyngeal carcinoma via modulating the Rho/Rac signaling pathway. Carcinogenesis, 2019, 40, 380-391.	1.3	49

#	Article	IF	CITATIONS
55	The influence of circular RNAs on autophagy and disease progression. Autophagy, 2022, 18, 240-253.	4.3	48
56	LPLUNC1 Inhibits Nasopharyngeal Carcinoma Cell Growth via Down-Regulation of the MAP Kinase and Cyclin D1/E2F Pathways. PLoS ONE, 2013, 8, e62869.	1.1	47
57	Emerging role of metabolic reprogramming in tumor immune evasion and immunotherapy. Science China Life Sciences, 2021, 64, 534-547.	2.3	47
58	Knockout of BRD7 results in impaired spermatogenesis and male infertility. Scientific Reports, 2016, 6, 21776.	1.6	46
59	CircARHGAP12 promotes nasopharyngeal carcinoma migration and invasion via ezrin-mediated cytoskeletal remodeling. Cancer Letters, 2021, 496, 41-56.	3.2	46
60	Identification of nuclear localization signal that governs nuclear import of BRD7 and its essential roles in inhibiting cell cycle progression. Journal of Cellular Biochemistry, 2006, 98, 920-930.	1.2	44
61	Knockdown of c-Myc inhibits cell proliferation by negatively regulating the Cdk/Rb/E2F pathway in nasopharyngeal carcinoma cells. Acta Biochimica Et Biophysica Sinica, 2015, 47, 183-191.	0.9	42
62	Elevated microRNA-125b levels predict a worse prognosis in HER2-positive breast cancer patients. Oncology Letters, 2017, 13, 867-874.	0.8	42
63	Upregulation and hypomethylation of lncRNA AFAP1â€'AS1 predicts a poor prognosis and promotes the migration and invasion of cervical cancer. Oncology Reports, 2019, 41, 2431-2439.	1.2	42
64	Fra-1 is upregulated in gastric cancer tissues and affects the PI3K/Akt and p53 signaling pathway in gastric cancer. International Journal of Oncology, 2015, 47, 1725-1734.	1.4	40
65	TSC22D2 interacts with PKM2 and inhibits cell growth in colorectal cancer. International Journal of Oncology, 2016, 49, 1046-1056.	1.4	40
66	Integrating ChIP-sequencing and digital gene expression profiling to identify BRD7 downstream genes and construct their regulating network. Molecular and Cellular Biochemistry, 2016, 411, 57-71.	1.4	40
67	BRD7 plays an anti-inflammatory role during early acute inflammation by inhibiting activation of the NF-аB signaling pathway. Cellular and Molecular Immunology, 2017, 14, 830-841.	4.8	40
68	Promoter methylation inhibits BRD7 expression in human nasopharyngeal carcinoma cells. BMC Cancer, 2008, 8, 253.	1.1	39
69	Long non-coding RNA AFAP1-AS1 accelerates lung cancer cells migration and invasion by interacting with SNIP1 to upregulate c-Myc. Signal Transduction and Targeted Therapy, 2021, 6, 240.	7.1	39
70	Regulatory pathways and drugs associated with ferroptosis in tumors. Cell Death and Disease, 2022, 13, .	2.7	39
71	SPLUNC1 reduces the inflammatory response of nasopharyngeal carcinoma cells infected with the EB virus by inhibiting the TLR9/NF-Î [®] B pathway. Oncology Reports, 2015, 33, 2779-2788.	1.2	37
72	Cloning and characterization of the putative AFAP1-AS1 promoter region. Journal of Cancer, 2019, 10, 1145-1153.	1.2	37

#	Article	IF	CITATIONS
73	MicroRNA-16 sensitizes breast cancer cells to paclitaxel through suppression of IKBKB expression. Oncotarget, 2016, 7, 23668-23683.	0.8	36
74	<i>GPC6</i> Promotes Cell Proliferation, Migration, and Invasion in Nasopharyngeal Carcinoma. Journal of Cancer, 2019, 10, 3926-3932.	1.2	34
7 5	Zinc-finger protein YY1 suppresses tumor growth of human nasopharyngeal carcinoma by inactivating c-Myc–mediated microRNA-141 transcription. Journal of Biological Chemistry, 2019, 294, 6172-6187.	1.6	34
76	Epsteinâ∈Barr virusâ∈encoded miRâ∈BART6â∈3p inhibits cancer cell proliferation through the LOC553103â∈6TM axis. FASEB Journal, 2020, 34, 8012-8027.	N1 0.2	34
77	What are the applications of single-cell RNA sequencing in cancer research: a systematic review. Journal of Experimental and Clinical Cancer Research, 2021, 40, 163.	3.5	33
78	Identification of candidate biomarkers for the early detection of nasopharyngeal carcinoma by quantitative proteomic analysis. Journal of Proteomics, 2014, 109, 162-175.	1.2	32
79	Abnormal X chromosome inactivation and tumor development. Cellular and Molecular Life Sciences, 2020, 77, 2949-2958.	2.4	32
80	Transcriptional regulation of BRD7 expression by Sp1 and c-Myc. BMC Molecular Biology, 2008, 9, 111.	3.0	31
81	Herpesvirus acts with the cytoskeleton and promotes cancer progression. Journal of Cancer, 2019, 10, 2185-2193.	1.2	31
82	TSC22D2 identified as a candidate susceptibility gene of multi-cancer pedigree using genome-wide linkage analysis and whole-exome sequencing. Carcinogenesis, 2019, 40, 819-827.	1.3	31
83	MiR-34b-3 and miR-449a inhibit malignant progression of nasopharyngeal carcinoma by targeting lactate dehydrogenase A. Oncotarget, 2016, 7, 54838-54851.	0.8	30
84	BRD7 expression and c-Myc activation forms a double-negative feedback loop that controls the cell proliferation and tumor growth of nasopharyngeal carcinoma by targeting oncogenic miR-141. Journal of Experimental and Clinical Cancer Research, 2018, 37, 64.	3.5	29
85	High Bak Expression Is Associated with a Favorable Prognosis in Breast Cancer and Sensitizes Breast Cancer Cells to Paclitaxel. PLoS ONE, 2015, 10, e0138955.	1.1	27
86	CD38 enhances the proliferation and inhibits the apoptosis of cervical cancer cells by affecting the mitochondria functions. Molecular Carcinogenesis, 2017, 56, 2245-2257.	1.3	26
87	HMG-box transcription factor 1: a positive regulator of the G1/S transition through the Cyclin-CDK-CDKI molecular network in nasopharyngeal carcinoma. Cell Death and Disease, 2018, 9, 100.	2.7	26
88	N6-methyladenosine-dependent signalling in cancer progression and insights into cancer therapies. Journal of Experimental and Clinical Cancer Research, 2021, 40, 146.	3.5	26
89	Isolation and characterization of a novel cDNA, UBAP1, derived from the tumor suppressor locus in human chromosome 9p21-22. Journal of Cancer Research and Clinical Oncology, 2001, 127, 613-618.	1.2	25
90	Recent advances of fluorescent biosensors based on cyclic signal amplification technology in biomedical detection. Journal of Nanobiotechnology, 2021, 19, 403.	4.2	25

#	Article	IF	CITATIONS
91	BRD7 inhibits the Warburg effect and tumor progression through inactivation of HIF1 $\hat{l}\pm$ /LDHA axis in breast cancer. Cell Death and Disease, 2018, 9, 519.	2.7	24
92	The interaction of Lin28A/Rho associated coiled-coil containing protein kinase2 accelerates the malignancy of ovarian cancer. Oncogene, 2019, 38, 1381-1397.	2.6	22
93	BRD7 suppresses invasion and metastasis in breast cancer by negatively regulating YB1-induced epithelial-mesenchymal transition. Journal of Experimental and Clinical Cancer Research, 2020, 39, 30.	3.5	22
94	The long noncoding RNA AATBC promotes breast cancer migration and invasion by interacting with YBX1 and activating the YAP1/Hippo signaling pathway. Cancer Letters, 2021, 512, 60-72.	3.2	22
95	Inactivation of BRD7 results in impaired cognitive behavior and reduced synaptic plasticity of the medial prefrontal cortex. Behavioural Brain Research, 2015, 286, 1-10.	1.2	20
96	FAIM2 Promotes Non-Small Cell Lung Cancer Cell Growth and Bone Metastasis by Activating the Wnt/ \hat{l}^2 -Catenin Pathway. Frontiers in Oncology, 2021, 11, 690142.	1.3	20
97	BRD2 is one of BRD7-interacting proteins and its over-expression could initiate apoptosis. Molecular and Cellular Biochemistry, 2006, 292, 205-212.	1.4	19
98	CD90 is upregulated in gastric cancer tissues and inhibits gastric cancer cell apoptosis by modulating the expression level of SPARC protein. Oncology Reports, 2015, 34, 2497-2506.	1.2	19
99	Bromodomain‑containing protein�7 sensitizes breast cancer cells to paclitaxel by activating Bcl2‑antagonist/killer protein. Oncology Reports, 2019, 41, 1487-1496.	1.2	18
100	BRD7 Promotes Cell Proliferation and Tumor Growth Through Stabilization of c-Myc in Colorectal Cancer. Frontiers in Cell and Developmental Biology, 2021, 9, 659392.	1.8	18
101	BPIFB1 inhibits vasculogenic mimicry via downregulation of GLUT1-mediated H3K27 acetylation in nasopharyngeal carcinoma. Oncogene, 2022, 41, 233-245.	2.6	14
102	Comparison of 68Ga-PSMA PET/CT and multiparametric MRI for the detection of low- and intermediate-risk prostate cancer. EJNMMI Research, 2022, 12, 10.	1.1	14
103	Preclinical and exploratory human studies of novel 68Ga-labeled D-peptide antagonist for PET imaging of TIGIT expression in cancers. European Journal of Nuclear Medicine and Molecular Imaging, 2022, 49, 2584-2594.	3.3	12
104	Cortical abnormalities of synaptic vesicle protein 2A in focal cortical dysplasia type II identified in vivo with 18F-SynVesT-1 positron emission tomography imaging. European Journal of Nuclear Medicine and Molecular Imaging, 2022, 49, 3482-3491.	3.3	11
105	Evaluation of $18\text{F-AlF-NOTA-octreotide}$ for imaging neuroendocrine neoplasms: comparison with 68Ga-DOTATATE PET/CT. EJNMMI Research, 2021, 11, 55.	1.1	10
106	Detailed deletion mapping of chromosome 9p21–22 in nasopharyngeal carcinoma. Chinese Journal of Cancer Research: Official Journal of China Anti-Cancer Association, Beijing Institute for Cancer Research, 2000, 12, 161-164.	0.7	8
107	Cloning and Characterization of the BRD7 Gene Promoter. DNA and Cell Biology, 2006, 25, 346-358.	0.9	8
108	Analysis and Molecular Cloning of Differentially Expressing Genes in Nasopharyngeal Carcinoma. Sheng Wu Hua Xue Yu Sheng Wu Wu Li Xue Bao Acta Biochimica Et Biophysica Sinica, 2000, 32, 327-332.	0.1	8

#	Article	IF	CITATIONS
109	Detection of changes in synaptic density in amyotrophic lateral sclerosis patients using <scp>¹⁸Fâ€SynVesT</scp> â€1 positron emission tomography. European Journal of Neurology, 2022, 29, 2934-2943.	1.7	8
110	Preparation of Polyclonal Antibody Specific for BRD7 and Detection of Its Expression Pattern in the Human Fetus. Journal of Histochemistry and Cytochemistry, 2008, 56, 531-538.	1.3	6
111	Utility of 18F-AlF-NOTA-Octreotide PET/CT in the Localization of Tumor-Induced Osteomalacia. Journal of Clinical Endocrinology and Metabolism, 2021, 106, e4202-e4209.	1.8	6
112	BRD7 Stabilizes P53 via Dephosphorylation of MDM2 to Inhibit Tumor Growth in Breast Cancer Harboring Wild-type P53. Journal of Cancer, 2022, 13, 1436-1448.	1.2	6
113	The emerging roles of the interaction between m6A modification and câ€Myc in driving tumorigenesis and development. Journal of Cellular Physiology, 2022, 237, 2758-2769.	2.0	6
114	Extrachromosomal Circular DNA: A New Target in Cancer. Frontiers in Oncology, 2022, 12, 814504.	1.3	6
115	Preparation of polyclonal antibody highly specific for mouse BRD7 protein and its application. Acta Biochimica Et Biophysica Sinica, 2014, 46, 163-166.	0.9	5
116	Identification and Validation of N6-Methyladenosine-Related Biomarkers for Bladder Cancer: Implications for Immunotherapy. Frontiers in Oncology, 2022, 12, 820242.	1.3	5
117	NGX6a Is Degraded through a Proteasome-dependent Pathway without Ubiquitination Mediated by Ezrin, a Cytoskeleton-Membrane Linker. Journal of Biological Chemistry, 2014, 289, 35731-35742.	1.6	4
118	Understanding the roles of stress granule during chemotherapy for patients with malignant tumors. American Journal of Cancer Research, 2020, 10, 2226-2241.	1.4	4
119	The biogenesis and roles of extrachromosomal oncogene involved in carcinogenesis and evolution. American Journal of Cancer Research, 2020, 10, 3532-3550.	1.4	4
120	YB1 associates with oncogenetic roles and poor prognosis in nasopharyngeal carcinoma. Scientific Reports, 2022, 12, 3699.	1.6	4
121	Optimization, automation and validation of the large-scale radiosynthesis of Al ¹⁸ F tracers in a custom-made automatic platform for high yield. Reaction Chemistry and Engineering, 2020, 5, 1441-1449.	1.9	3
122	The role of alternative splicing in human cancer progression. American Journal of Cancer Research, 2021, 11, 4642-4667.	1.4	3
123	Prognosis Evaluation Using ¹⁸ F-Alfatide II PET in a Rat Model of Spinal Cord Injury Treated With Estrogen. Molecular Imaging, 2020, 19, 153601212090919.	0.7	2
124	18F-SynVesT-1 PET in Focal Cortical Dysplasia Type II With Thickening Cortex. Clinical Nuclear Medicine, 2022, Publish Ahead of Print, .	0.7	1
125	Isolation of tumor diferentially expressed genes by mixing probes library screen. Chinese Journal of Cancer Research: Official Journal of China Anti-Cancer Association, Beijing Institute for Cancer Research, 2001, 13, 79-82.	0.7	0
126	Expression of nitroreductase gene NOR1 in E.Coli and the preparation of antiserum. Chinese Journal of Cancer Research: Official Journal of China Anti-Cancer Association, Beijing Institute for Cancer Research, 2004, 16, 11-14.	0.7	0