Fu-wing Yu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9545123/publications.pdf Version: 2024-02-01

FILMING YI

#	Article	IF	CITATIONS
1	Optimization of water-cooled chiller system with load-based speed control. Applied Energy, 2008, 85, 931-950.	10.1	85
2	Applying condensing-temperature control in air-cooled reciprocating water chillers for energy efficiency. Applied Energy, 2002, 72, 565-581.	10.1	53
3	Improved energy management of chiller systems by multivariate and data envelopment analyses. Applied Energy, 2012, 92, 168-174.	10.1	53
4	Part load performance of air-cooled centrifugal chillers with variable speed condenser fan control. Building and Environment, 2007, 42, 3816-3829.	6.9	51
5	Economic benefits of optimal control for water-cooled chiller systems serving hotels in a subtropical climate. Energy and Buildings, 2010, 42, 203-209.	6.7	48
6	Experimental determination of the energy efficiency of an air-cooled chiller under part load conditions. Energy, 2005, 30, 1747-1758.	8.8	46
7	Improved energy performance of air cooled centrifugal chillers with variable chilled water flow. Energy Conversion and Management, 2008, 49, 1595-1611.	9.2	44
8	Optimum load sharing strategy for multiple-chiller systems serving air-conditioned buildings. Building and Environment, 2007, 42, 1581-1593.	6.9	43
9	Optimum Setpoint of Condensing Temperature for Air-Cooled Chillers. HVAC and R Research, 2004, 10, 113-127.	0.6	41
10	Energy signatures for assessing the energy performance of chillers. Energy and Buildings, 2005, 37, 739-746.	6.7	41
11	Environmental performance and economic analysis of all-variable speed chiller systems with load-based speed control. Applied Thermal Engineering, 2009, 29, 1721-1729.	6.0	39
12	Improved energy performance of air-cooled chiller system with mist pre-cooling. Applied Thermal Engineering, 2011, 31, 537-544.	6.0	36
13	Improved condenser design and condenser-fan operation for air-cooled chillers. Applied Energy, 2006, 83, 628-648.	10.1	35
14	Optimizing condenser fan control for air-cooled centrifugal chillers. International Journal of Thermal Sciences, 2008, 47, 942-953.	4.9	32
15	Review of Standards for Energy Performance of Chiller Systems Serving Commercial Buildings. Energy Procedia, 2014, 61, 2778-2782.	1.8	30
16	An analysis on the energy efficiency of air-cooled chillers with water mist system. Energy and Buildings, 2012, 55, 273-284.	6.7	29
17	Critique of operating variables importance on chiller energy performance using random forest. Energy and Buildings, 2017, 139, 653-664.	6.7	28
18	Modelling of the coefficient of performance of an air-cooled screw chiller with variable speed condenser fans. Building and Environment, 2006, 41, 407-417.	6.9	27

Fu-wing Yu

#	Article	IF	CITATIONS
19	Electricity end-use characteristics of air-cooled chillers in hotels in Hong Kong. Building and Environment, 2005, 40, 143-151.	6.9	26
20	Application of Direct Evaporative Coolers for Improving the Energy Efficiency of Air-Cooled Chillers. Journal of Solar Energy Engineering, Transactions of the ASME, 2005, 127, 430-433.	1.8	26
21	Strategy for designing more energy efficient chiller plants serving air-conditioned buildings. Building and Environment, 2007, 42, 3737-3746.	6.9	25
22	Modelling of a condenser-fan control for an air-cooled centrifugal chiller. Applied Energy, 2007, 84, 1117-1135.	10.1	25
23	Assessment of operating performance of chiller systems using cluster analysis. International Journal of Thermal Sciences, 2012, 53, 148-155.	4.9	21
24	Using cluster and multivariate analyses to appraise the operating performance of a chiller system serving an institutional building. Energy and Buildings, 2012, 44, 104-113.	6.7	20
25	Simulation and electricity savings estimation of air-cooled centrifugal chiller system with mist pre-cooling. Applied Energy, 2010, 87, 1198-1206.	10.1	19
26	Energy simulation of sustainable air-cooled chiller system for commercial buildings under climate change. Energy and Buildings, 2013, 64, 162-171.	6.7	19
27	Advanced control of condensing temperature for enhancing the operating efficiency of air-cooled chillers. Building and Environment, 2005, 40, 727-737.	6.9	18
28	Thermodynamic-behaviour model for air-cooled screw chillers with a variable set-point condensing temperature. Applied Energy, 2006, 83, 265-279.	10.1	17
29	An alternative approach for the performance rating of air-cooled chillers used in air-conditioned buildings. Building and Environment, 2006, 41, 1723-1730.	6.9	17
30	Modelling of improved energy performance of air-cooled chillers with mist pre-cooling. International Journal of Thermal Sciences, 2009, 48, 825-836.	4.9	17
31	Analysis of the component characteristics of air-cooled chillers for modelling floating condensing temperature control. Energy Conversion and Management, 2005, 46, 927-939.	9.2	15
32	Tune up of the set point of condensing temperature for more energy efficient air cooled chillers. Energy Conversion and Management, 2006, 47, 2499-2514.	9.2	15
33	Improved energy management of chiller systems with data envelopment analysis. Applied Thermal Engineering, 2013, 50, 309-317.	6.0	15
34	Optimum condenser fan staging for air-cooled chillers. Applied Thermal Engineering, 2005, 25, 2204-2218.	6.0	14
35	Low-energy design for air-cooled chiller plants in air-conditioned buildings. Energy and Buildings, 2006, 38, 334-339.	6.7	13
36	Economic benefits of improved condenser features for air-cooled chillers serving an air-conditioned hotel. Applied Thermal Engineering, 2006, 26, 1063-1073.	6.0	12

Fu-wing Yu

#	Article	IF	CITATIONS
37	Performance Evaluation of Oil-free Chillers for Building Energy Performance Improvement. Procedia Engineering, 2015, 121, 975-983.	1.2	12
38	Life cycle analysis of enhanced condenser features for air-cooled chillers serving air-conditioned buildings. Building and Environment, 2006, 41, 981-991.	6.9	10
39	Climatic influence on the design and operation of chiller systems serving office buildings in a subtropical climate. Energy and Buildings, 2012, 55, 500-507.	6.7	10
40	Constraints of using thermostatic expansion valves to operate air-cooled chillers at lower condensing temperatures. Applied Thermal Engineering, 2006, 26, 2470-2478.	6.0	9
41	Economic analysis of air-cooled chiller with advanced heat rejection. International Journal of Refrigeration, 2017, 73, 54-64.	3.4	9
42	Hybrid Artificial Neural Networkâ^'Genetic Algorithm Technique for Condensing Temperature Control of Air-Cooled Chillers. Procedia Engineering, 2015, 121, 706-713.	1.2	8
43	Comparative study on the energy performance of chiller system in an institutional building with stochastic frontier analysis. Energy and Buildings, 2015, 89, 206-212.	6.7	8
44	Chiller system performance benchmark by data envelopment analysis. International Journal of Refrigeration, 2012, 35, 1815-1823.	3.4	7
45	Analysis of centrifugal chillers with oil-free magnetic bearings for enhancing building energy performance. Science and Technology for the Built Environment, 2017, 23, 334-344.	1.7	5
46	Energy management of chiller systems by data envelopment analysis. Facilities, 2013, 31, 106-118.	1.6	4
47	Cooling effectiveness of mist precooler for improving energy performance of air-cooled chiller. Thermal Science, 2018, 22, 193-204.	1.1	4
48	Evaporative cooling technologies for air-cooled chillers for building energy performance improvement. Advances in Building Energy Research, 2016, 10, 10-19.	2.3	2
49	Environmental benefits of sustainable chiller system under climate change. International Journal of Sustainable Building Technology and Urban Development, 2014, 5, 109-114.	1.0	0