
Giuseppe Ferrauto

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9544873/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Compartmentalized agents: A powerful strategy for enhancing the detection sensitivity of chemical exchange saturation transfer contrast. NMR in Biomedicine, 2023, 36, .	1.6	3
2	The interaction between iodinated Xâ€ray contrast agents and macrocyclic <scp>GBCAs</scp> provides a signal enhancement in <scp>T₁â€weighted MR</scp> images: Insights into the renal excretion pathways of <scp>Gdâ€HPDO3A</scp> and iodixanol in healthy mice. Magnetic Resonance in Medicine, 2022, 88, 357-364.	1.9	4
3	Effects of Cations on HPTS Fluorescence and Quantification of Free Gadolinium Ions in Solution; Assessment of Intracellular Release of Gd3+ from Gd-Based MRI Contrast Agents. Molecules, 2022, 27, 2490.	1.7	1
4	Studies of the hydrophobic interaction between a pyrene-containing dye and a tetra-aza macrocyclic gadolinium complex. Inorganic Chemistry Frontiers, 2022, 9, 3494-3504.	3.0	1
5	Toll-like receptor 2 promotes breast cancer progression and resistance to chemotherapy. Oncolmmunology, 2022, 11, .	2.1	12
6	Supramolecular adducts between macrocyclic Gd(<scp>iii</scp>) complexes and polyaromatic systems: a route to enhance the relaxivity through the formation of hydrophobic interactions. Chemical Science, 2021, 12, 1368-1377.	3.7	7
7	LipHosomes: Reporters for Ligand/Anti‣igand Assays Based On pH Readout. Analysis & Sensing, 2021, 1, 48-53.	1.1	1
8	Mn(<scp>ii</scp>)-Conjugated silica nanoparticles as potential MRI probes. Journal of Materials Chemistry B, 2021, 9, 8994-9004.	2.9	9
9	Detection of U-87 Tumor Cells by RGD-Functionalized/Gd-Containing Giant Unilamellar Vesicles in Magnetization Transfer Contrast Magnetic Resonance Images. Investigative Radiology, 2021, 56, 301-312.	3.5	8
10	Multilamellar LipoCEST Agents Obtained from Osmotic Shrinkage of Paramagnetically Loaded Giant Unilamellar Vescicles (GUVs). Angewandte Chemie - International Edition, 2020, 59, 2279-2283.	7.2	5
11	Water Diffusion Modulates the CEST Effect on Tb(III)-Mesoporous Silica Probes. Magnetochemistry, 2020, 6, 38.	1.0	3
12	Activation of the <scp>MET</scp> receptor attenuates doxorubicinâ€induced cardiotoxicity in vivo and in vitro. British Journal of Pharmacology, 2020, 177, 3107-3122.	2.7	20
13	Relaxometric studies of erythrocyte suspensions infected by <i>Plasmodium falciparum</i> : a tool for staging infection and testing antiâ€malarial drugs. Magnetic Resonance in Medicine, 2020, 84, 3366-3378.	1.9	13
14	Acid-catalyzed proton exchange as a novel approach for relaxivity enhancement in Gd-HPDO3A-like complexes. Chemical Science, 2020, 11, 7829-7835.	3.7	13
15	A Simple and Fast Assay Based on Carboxyfluorescein-Loaded Liposome for Quantitative DNA Detection. ACS Omega, 2020, 5, 1764-1772.	1.6	7
16	Multilamellar LipoCEST Agents Obtained from Osmotic Shrinkage of Paramagnetically Loaded Giant Unilamellar Vescicles (GUVs). Angewandte Chemie, 2020, 132, 2299-2303.	1.6	2
17	Photoacoustic ratiometric assessment of mitoxantrone release from theranostic ICG-conjugated mesoporous silica nanoparticles. Nanoscale, 2019, 11, 18031-18036.	2.8	12
18	Use of FCC-NMRD relaxometry for early detection and characterization of ex-vivo murine breast cancer. Scientific Reports, 2019, 9, 4624.	1.6	8

GIUSEPPE FERRAUTO

#	Article	IF	CITATIONS
19	Development and characterization of lanthanide-HPDO3A-C16-based micelles as CEST-MRI contrast agents. Dalton Transactions, 2019, 48, 5343-5351.	1.6	6
20	Modifying LnHPDO3A Chelates for Improved <i>T</i> ₁ and CEST MRI Applications. Chemistry - A European Journal, 2019, 25, 4184-4193.	1.7	8
21	CESTâ€MRI studies of cells loaded with lanthanide shift reagents. Magnetic Resonance in Medicine, 2018, 80, 1626-1637.	1.9	15
22	Gd accumulation in tissues of healthy mice upon repeated administrations of Gadodiamide and Gadoteridol. Journal of Trace Elements in Medicine and Biology, 2018, 48, 239-245.	1.5	23
23	CESTâ€MRI for glioma pH quantification in mouse model: Validation by immunohistochemistry. NMR in Biomedicine, 2018, 31, e4005.	1.6	26
24	Complete on/off responsive ParaCEST MRI contrast agents for copper and zinc. Dalton Transactions, 2018, 47, 11346-11357.	1.6	19
25	Optimizing the Relaxivity of MRI Probes at High Magnetic Field Strengths With Binuclear GdIII Complexes. Frontiers in Chemistry, 2018, 6, 158.	1.8	14
26	Generation of multiparametric MRI maps by using Gd-labelled- RBCs reveals phenotypes and stages of murine prostate cancer. Scientific Reports, 2018, 8, 10567.	1.6	7
27	Modulation of the Prototropic Exchange Rate in pHâ€Responsive Ybâ€HPDO3A Derivatives as ParaCEST Agents. ChemistrySelect, 2018, 3, 6035-6041.	0.7	11
28	The Issue of Gadolinium Retained in Tissues. Investigative Radiology, 2018, 53, 167-172.	3.5	44
29	Large photoacoustic effect enhancement for ICG confined inside MCM-41 mesoporous silica nanoparticles. Nanoscale, 2017, 9, 99-103.	2.8	34
30	Eight-Coordinate, Stable Fe(II) Complex as a Dual ¹⁹ F and CEST Contrast Agent for Ratiometric pH Imaging. Inorganic Chemistry, 2017, 56, 12206-12213.	1.9	41
31	Enzymeâ€Responsive LipoCEST Agents: Assessment of MMPâ€⊋ Activity by Measuring the Intraâ€liposomal Water ¹ Hâ€NMR Shift. Angewandte Chemie - International Edition, 2017, 56, 12170-12173.	7.2	19
32	Enzymeâ€Responsive LipoCEST Agents: Assessment of MMPâ€2 Activity by Measuring the Intraâ€liposomal Water ¹ Hâ€NMR Shift. Angewandte Chemie, 2017, 129, 12338-12341.	1.6	7
33	Chapter 3. Chemical Exchange Saturation Transfer (CEST) Contrast Agents. New Developments in NMR, 2017, , 243-317.	0.1	7
34	LipoCEST and cellCEST imaging agents: opportunities and challenges. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 2016, 8, 602-618.	3.3	40
35	Advanced cardiac chemical exchange saturation transfer (cardioCEST) MRI for <i>in vivo</i> cell tracking and metabolic imaging. NMR in Biomedicine, 2016, 29, 74-83.	1.6	32
36	Re-evaluation of the water exchange lifetime value across red blood cell membrane. Biochimica Et Biophysica Acta - Biomembranes, 2016, 1858, 627-631.	1.4	33

GIUSEPPE FERRAUTO

#	Article	IF	CITATIONS
37	Simultaneous MR imaging for tissue engineering in a rat model of stroke. Scientific Reports, 2015, 5, 14597.	1.6	26
38	Sensitive MRI detection of internalized <i>T</i> ₁ contrast agents using magnetization transfer contrast. NMR in Biomedicine, 2015, 28, 1663-1670.	1.6	11
39	Insights on the relaxation of liposomes encapsulating paramagnetic Lnâ€based complexes. Magnetic Resonance in Medicine, 2015, 74, 468-473.	1.9	15
40	An MRI Method To Map Tumor Hypoxia Using Red Blood Cells Loaded with a pO ₂ -Responsive Gd-Agent. ACS Nano, 2015, 9, 8239-8248.	7.3	36
41	Gd-loaded-RBCs for the assessment of tumor vascular volume byÂcontrast-enhanced-MRI. Biomaterials, 2015, 58, 82-92.	5.7	29
42	Lanthanide-Loaded Erythrocytes As Highly Sensitive Chemical Exchange Saturation Transfer MRI Contrast Agents. Journal of the American Chemical Society, 2014, 136, 638-641.	6.6	47
43	MRI nanoprobes based on chemical exchange saturation transfer: Ln ^{III} chelates anchored on the surface of mesoporous silica nanoparticles. Nanoscale, 2014, 6, 9604-9607.	2.8	19
44	Frequency-Encoded MRI-CEST Agents Based on Paramagnetic Liposomes/RBC Aggregates. Nano Letters, 2014, 14, 6857-6862.	4.5	24
45	In vivo maps of extracellular pH in murine melanoma by CEST–MRI. Magnetic Resonance in Medicine, 2014, 71, 326-332.	1.9	98
46	In vivo MRI visualization of different cell populations labeled with PARACEST agents. Magnetic Resonance in Medicine, 2013, 69, 1703-1711.	1.9	58
47	Gd loading by hypotonic swelling: an efficient and safe route for cellular labeling. Contrast Media and Molecular Imaging, 2013, 8, 475-486.	0.4	37