Maria T Hultman

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9544825/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Cell-based data to predict the toxicity of chemicals to fish. Commentary on the manuscript by Rodrigues etÂal., 2019. Cell-based assays seem not to accurately predict fish short-term toxicity of pesticides. Environmental Pollution 252:476–482. Environmental Pollution, 2019, 254, 113060.	3.7	1
2	Performance of Threeâ€Ðimensional Rainbow Trout (<i>Oncorhynchus mykiss</i>) Hepatocyte Spheroids for Evaluating Biotransformation of Pyrene. Environmental Toxicology and Chemistry, 2019, 38, 1738-1747.	2.2	7
3	Repeatability and Reproducibility of the RTgill-W1 Cell Line Assay for Predicting Fish Acute Toxicity. Toxicological Sciences, 2019, 169, 353-364.	1.4	52
4	Primary hepatocytes from Arctic char (Salvelinus alpinus) as a relevant Arctic in vitro model for screening contaminants and environmental extracts. Aquatic Toxicology, 2017, 187, 141-152.	1.9	8
5	Characterizing combined effects of antiestrogenic chemicals on vitellogenin production in rainbow trout (Oncorhynchus mykiss) hepatocytes. Journal of Toxicology and Environmental Health - Part A: Current Issues, 2017, 80, 987-1001.	1.1	5
6	Characterizing cytotoxic and estrogenic activity of Arctic char tissue extracts in primary Arctic char hepatocytes. Journal of Toxicology and Environmental Health - Part A: Current Issues, 2017, 80, 1017-1030.	1.1	1
7	Toxicity of organic compounds from unresolved complex mixtures (UCMs) to primary fish hepatocytes. Aquatic Toxicology, 2017, 190, 150-161.	1.9	25

8 17α-Ethinylestradiol (EE2) effect on global gene expression in primary rainbow trout (Oncorhynchus) Tj ETQq0 0 0.rgBT /Overlock 10 Tf

9	Evaluation of the sensitivity, responsiveness and reproducibility of primary rainbow trout hepatocyte vitellogenin expression as a screening assay for estrogen mimics. Aquatic Toxicology, 2015, 159, 233-244.	1.9	18
10	Integrated biomarker assessment of the effects of tailing discharges from an iron ore mine using blue mussels (Mytilus spp.). Science of the Total Environment, 2015, 524-525, 104-114.	3.9	38