Cyril B Zipfel

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9544005/publications.pdf Version: 2024-02-01

CVDIL R 7IDEEL

#	Article	IF	CITATIONS
1	Perception of the Bacterial PAMP EF-Tu by the Receptor EFR Restricts Agrobacterium-Mediated Transformation. Cell, 2006, 125, 749-760.	28.9	1,658
2	A flagellin-induced complex of the receptor FLS2 and BAK1 initiates plant defence. Nature, 2007, 448, 497-500.	27.8	1,619
3	Bacterial disease resistance in Arabidopsis through flagellin perception. Nature, 2004, 428, 764-767.	27.8	1,487
4	Regulation of pattern recognition receptor signalling in plants. Nature Reviews Immunology, 2016, 16, 537-552.	22.7	1,031
5	Plant pattern-recognition receptors. Trends in Immunology, 2014, 35, 345-351.	6.8	847
6	Plant PRRs and the Activation of Innate Immune Signaling. Molecular Cell, 2014, 54, 263-272.	9.7	798
7	The N Terminus of Bacterial Elongation Factor Tu Elicits Innate Immunity in Arabidopsis Plants. Plant Cell, 2004, 16, 3496-3507.	6.6	780
8	Direct Regulation of the NADPH Oxidase RBOHD by the PRR-Associated Kinase BIK1 during Plant Immunity. Molecular Cell, 2014, 54, 43-55.	9.7	744
9	Plant pattern recognition receptor complexes at the plasma membrane. Current Opinion in Plant Biology, 2012, 15, 349-357.	7.1	626
10	Structural Basis for flg22-Induced Activation of the <i>Arabidopsis</i> FLS2-BAK1 Immune Complex. Science, 2013, 342, 624-628.	12.6	604
11	The <i>Arabidopsis</i> Leucine-Rich Repeat Receptor–Like Kinases BAK1/SERK3 and BKK1/SERK4 Are Required for Innate Immunity to Hemibiotrophic and Biotrophic Pathogens. Plant Cell, 2011, 23, 2440-2455.	6.6	578
12	Plant signalling in symbiosis and immunity. Nature, 2017, 543, 328-336.	27.8	576
13	The Transcriptional Innate Immune Response to flg22. Interplay and Overlap with Avr Gene-Dependent Defense Responses and Bacterial Pathogenesis. Plant Physiology, 2004, 135, 1113-1128.	4.8	562
14	Transgeneration memory of stress in plants. Nature, 2006, 442, 1046-1049.	27.8	557
15	Pattern-recognition receptors in plant innate immunity. Current Opinion in Immunology, 2008, 20, 10-16.	5.5	555
16	The receptor kinase FER is a RALF-regulated scaffold controlling plant immune signaling. Science, 2017, 355, 287-289.	12.6	541
17	Function, Discovery, and Exploitation of Plant Pattern Recognition Receptors for Broad-Spectrum Disease Resistance. Annual Review of Phytopathology, 2017, 55, 257-286.	7.8	535
18	Regulation of the NADPH Oxidase RBOHD During Plant Immunity. Plant and Cell Physiology, 2015, 56, 1472-1480.	3.1	480

#	Article	IF	CITATIONS
19	Interfamily transfer of a plant pattern-recognition receptor confers broad-spectrum bacterial resistance. Nature Biotechnology, 2010, 28, 365-369.	17.5	464
20	Phosphorylation-Dependent Differential Regulation of Plant Growth, Cell Death, and Innate Immunity by the Regulatory Receptor-Like Kinase BAK1. PLoS Genetics, 2011, 7, e1002046.	3.5	439
21	Early molecular events in PAMP-triggered immunity. Current Opinion in Plant Biology, 2009, 12, 414-420.	7.1	424
22	Cell Wall Damage-Induced Lignin Biosynthesis Is Regulated by a Reactive Oxygen Species- and Jasmonic Acid-Dependent Process in Arabidopsis Â. Plant Physiology, 2011, 156, 1364-1374.	4.8	382
23	Bacteria establish an aqueous living space in plants crucial for virulence. Nature, 2016, 539, 524-529.	27.8	358
24	Effector Biology of Plant-Associated Organisms: Concepts and Perspectives. Cold Spring Harbor Symposia on Quantitative Biology, 2012, 77, 235-247.	1.1	355
25	Plants and animals: a different taste for microbes?. Current Opinion in Plant Biology, 2005, 8, 353-360.	7.1	349
26	Recent Advances in PAMP-Triggered Immunity against Bacteria: Pattern Recognition Receptors Watch over and Raise the Alarm. Plant Physiology, 2009, 150, 1638-1647.	4.8	308
27	Brassinosteroids inhibit pathogen-associated molecular pattern–triggered immune signaling independent of the receptor kinase BAK1. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 303-308.	7.1	303
28	News from the frontline: recent insights into PAMP-triggered immunity in plants. Current Opinion in Plant Biology, 2008, 11, 389-395.	7.1	267
29	Control of the pattern-recognition receptor EFR by an ER protein complex in plant immunity. EMBO Journal, 2009, 28, 3428-3438.	7.8	267
30	A Genome-Wide Functional Investigation into the Roles of Receptor-Like Proteins in Arabidopsis Â. Plant Physiology, 2008, 147, 503-517.	4.8	266
31	<i>Arabidopsis</i> RECEPTOR-LIKE PROTEIN30 and Receptor-Like Kinase SUPPRESSOR OF BIR1-1/EVERSHED Mediate Innate Immunity to Necrotrophic Fungi Â. Plant Cell, 2013, 25, 4227-4241.	6.6	265
32	Activation of plant pattern-recognition receptors by bacteria. Current Opinion in Microbiology, 2011, 14, 54-61.	5.1	264
33	Standards for plant synthetic biology: a common syntax for exchange of <scp>DNA</scp> parts. New Phytologist, 2015, 208, 13-19.	7.3	263
34	Specific ER quality control components required for biogenesis of the plant innate immune receptor EFR. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 15973-15978.	7.1	241
35	An extracellular network of Arabidopsis leucine-rich repeat receptor kinases. Nature, 2018, 553, 342-346.	27.8	241
36	Targeting of plant pattern recognition receptor-triggered immunity by bacterial type-III secretion system effectors. Current Opinion in Microbiology, 2015, 23, 14-22.	5.1	229

#	Article	IF	CITATIONS
37	The Leucine-Rich Repeat Receptor Kinase BIR2 Is a Negative Regulator of BAK1 in Plant Immunity. Current Biology, 2014, 24, 134-143.	3.9	219
38	Direct transcriptional control of the <i>Arabidopsis</i> immune receptor FLS2 by the ethylene-dependent transcription factors EIN3 and EIL1. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 14502-14507.	7.1	218
39	Trade-off between growth and immunity: role of brassinosteroids. Trends in Plant Science, 2015, 20, 12-19.	8.8	216
40	The Calcium-Dependent Protein Kinase CPK28 Buffers Plant Immunity and Regulates BIK1 Turnover. Cell Host and Microbe, 2014, 16, 605-615.	11.0	208
41	The calcium-permeable channel OSCA1.3 regulates plant stomatal immunity. Nature, 2020, 585, 569-573.	27.8	208
42	The transcriptional regulator BZR1 mediates trade-off between plant innate immunity and growth. ELife, 2013, 2, e00983.	6.0	208
43	Pathogen-Associated Molecular Pattern-Triggered Immunity: Veni, Vidi…?. Plant Physiology, 2010, 154, 551-554.	4.8	206
44	Plant immune and growth receptors share common signalling components but localise to distinct plasma membrane nanodomains. ELife, 2017, 6, .	6.0	206
45	Cellulose-Derived Oligomers Act as Damage-Associated Molecular Patterns and Trigger Defense-Like Responses. Plant Physiology, 2017, 173, 2383-2398.	4.8	198
46	The Arabidopsis leucine-rich repeat receptor kinase MIK2/LRR-KISS connects cell wall integrity sensing, root growth and response to abiotic and biotic stresses. PLoS Genetics, 2017, 13, e1006832.	3.5	187
47	Mechanisms of RALF peptide perception by a heterotypic receptor complex. Nature, 2019, 572, 270-274.	27.8	186
48	Hierarchy and Roles of Pathogen-Associated Molecular Pattern-Induced Responses in <i>Nicotiana benthamiana</i> Â Â. Plant Physiology, 2011, 156, 687-699.	4.8	185
49	The plant cell wall integrity maintenance and immune signaling systems cooperate to control stress responses in <i>Arabidopsis thaliana</i> . Science Signaling, 2018, 11, .	3.6	178
50	The transcriptional landscape of Arabidopsis thaliana pattern-triggered immunity. Nature Plants, 2021, 7, 579-586.	9.3	172
51	Molecular mechanisms of early plant pattern-triggered immune signaling. Molecular Cell, 2021, 81, 3449-3467.	9.7	171
52	The Receptor-Like Kinase SERK3/BAK1 Is Required for Basal Resistance against the Late Blight Pathogen Phytophthora infestans in Nicotiana benthamiana. PLoS ONE, 2011, 6, e16608.	2.5	170
53	The Arabidopsis NADPH oxidases <i>RbohD</i> and <i>RbohF</i> display differential expression patterns and contributions during plant immunity. Journal of Experimental Botany, 2016, 67, 1663-1676.	4.8	161
54	A Regulatory Module Controlling Homeostasis of a Plant Immune Kinase. Molecular Cell, 2018, 69, 493-504.e6.	9.7	161

#	Article	IF	CITATIONS
55	Tackling Drought Stress: RECEPTOR-LIKE KINASES Present New Approaches. Plant Cell, 2012, 24, 2262-2278.	6.6	155
56	A Bacterial Tyrosine Phosphatase Inhibits Plant Pattern Recognition Receptor Activation. Science, 2014, 343, 1509-1512.	12.6	152
57	Arabidopsis <scp>EF</scp> â€Tu receptor enhances bacterial disease resistance in transgenic wheat. New Phytologist, 2015, 206, 606-613.	7.3	150
58	The grapevine flagellin receptor Vv <scp>FLS</scp> 2 differentially recognizes flagellinâ€derived epitopes from the endophytic growthâ€promoting bacterium <i>Burkholderia phytofirmans</i> and plant pathogenic bacteria. New Phytologist, 2014, 201, 1371-1384.	7.3	147
59	Pseudomonas HopU1 modulates plant immune receptor levels by blocking the interaction of their mRNAs with GRP7. EMBO Journal, 2013, 32, 701-712.	7.8	145
60	A receptor-like protein mediates the response to pectin modification by activating brassinosteroid signaling. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 15261-15266.	7.1	143
61	Negative control of <scp>BAK</scp> 1 by protein phosphatase 2A during plant innate immunity. EMBO Journal, 2014, 33, 2069-2079.	7.8	138
62	Arabidopsis leucine-rich repeat receptor–like kinase NILR1 is required for induction of innate immunity to parasitic nematodes. PLoS Pathogens, 2017, 13, e1006284.	4.7	135
63	The Leucine-Rich Repeat Receptor-Like Kinase BRASSINOSTEROID INSENSITIVE1-ASSOCIATED KINASE1 and the Cytochrome P450 PHYTOALEXIN DEFICIENT3 Contribute to Innate Immunity to Aphids in Arabidopsis Â Â. Plant Physiology, 2014, 164, 2207-2219.	4.8	132
64	ASPARTATE OXIDASE Plays an Important Role in Arabidopsis Stomatal Immunity Â. Plant Physiology, 2012, 159, 1845-1856.	4.8	129
65	The Variable Domain of a Plant Calcium-dependent Protein Kinase (CDPK) Confers Subcellular Localization and Substrate Recognition for NADPH Oxidase. Journal of Biological Chemistry, 2013, 288, 14332-14340.	3.4	129
66	The Arabidopsis Malectin-Like/LRR-RLK IOS1 is Critical for BAK1-Dependent and BAK1-Independent Pattern-Triggered Immunity. Plant Cell, 2016, 28, tpc.00313.2016.	6.6	126
67	Phosphocode-dependent functional dichotomy of a common co-receptor in plant signalling. Nature, 2018, 561, 248-252.	27.8	126
68	Antagonistic Regulation of Growth and Immunity by the Arabidopsis Basic Helix-Loop-Helix Transcription Factor HOMOLOG OF BRASSINOSTEROID ENHANCED EXPRESSION2 INTERACTING WITH INCREASED LEAF INCLINATION1 BINDING bHLH1 Â Â. Plant Physiology, 2014, 164, 1443-1455.	4.8	117
69	The Arabidopsis Protein Phosphatase PP2C38 Negatively Regulates the Central Immune Kinase BIK1. PLoS Pathogens, 2016, 12, e1005811.	4.7	113
70	Detection of the plant parasite <i>Cuscuta reflexa</i> by a tomato cell surface receptor. Science, 2016, 353, 478-481.	12.6	108
71	Transgenic Expression of the Dicotyledonous Pattern Recognition Receptor EFR in Rice Leads to Ligand-Dependent Activation of Defense Responses. PLoS Pathogens, 2015, 11, e1004809.	4.7	103
72	Quantitative phosphoproteomic analysis reveals common regulatory mechanisms between effector― and PAMPâ€ŧriggered immunity in plants. New Phytologist, 2019, 221, 2160-2175.	7.3	102

#	Article	IF	CITATIONS
73	An apoplastic peptide activates salicylic acid signalling in maize. Nature Plants, 2018, 4, 172-180.	9.3	97
74	The Arabidopsis Leucine-Rich Repeat Receptor Kinase BIR3 Negatively Regulates BAK1 Receptor Complex Formation and Stabilizes BAK1. Plant Cell, 2017, 29, 2285-2303.	6.6	94
75	The Phylogenetically-Related Pattern Recognition Receptors EFR and XA21 Recruit Similar Immune Signaling Components in Monocots and Dicots. PLoS Pathogens, 2015, 11, e1004602.	4.7	87
76	A receptor-like protein mediates plant immune responses to herbivore-associated molecular patterns. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 31510-31518.	7.1	86
77	NbCSPR underlies age-dependent immune responses to bacterial cold shock protein in <i>Nicotiana benthamiana</i> . Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 3389-3394.	7.1	85
78	Wheat Pm4 resistance to powdery mildew is controlled by alternative splice variants encoding chimeric proteins. Nature Plants, 2021, 7, 327-341.	9.3	85
79	Ca ²⁺ signals in plant immunity. EMBO Journal, 2022, 41, e110741.	7.8	82
80	The calcium-dependent protein kinase CPK28 negatively regulates the BIK1-mediated PAMP-induced calcium burst. Plant Signaling and Behavior, 2015, 10, e1018497.	2.4	73
81	REM1.3's phospho-status defines its plasma membrane nanodomain organization and activity in restricting PVX cell-to-cell movement. PLoS Pathogens, 2018, 14, e1007378.	4.7	73
82	Comparing Arabidopsis receptor kinase and receptor proteinâ€mediated immune signaling reveals BIK1â€dependent differences. New Phytologist, 2019, 221, 2080-2095.	7.3	73
83	Perception of a divergent family of phytocytokines by the Arabidopsis receptor kinase MIK2. Nature Communications, 2021, 12, 705.	12.8	71
84	β-N-Acetylhexosaminidases HEXO1 and HEXO3 Are Responsible for the Formation of Paucimannosidic N-Glycans in Arabidopsis thaliana. Journal of Biological Chemistry, 2011, 286, 10793-10802.	3.4	69
85	Transgenic Expression of <i>EFR</i> and <i>Bs2</i> Genes for Field Management of Bacterial Wilt and Bacterial Spot of Tomato. Phytopathology, 2018, 108, 1402-1411.	2.2	67
86	A membrane-bound ankyrin repeat protein confers race-specific leaf rust disease resistance in wheat. Nature Communications, 2021, 12, 956.	12.8	63
87	<i>Cr</i> <scp>RLK</scp> 1L receptorâ€like kinases <scp>HERK</scp> 1 and <scp>ANJEA</scp> are female determinants of pollen tube reception. EMBO Reports, 2020, 21, e48466.	4.5	62
88	Cautionary Notes on the Use of C-Terminal BAK1 Fusion Proteins for Functional Studies. Plant Cell, 2011, 23, 3871-3878.	6.6	60
89	Methods to Study PAMP-Triggered Immunity in <i>Brassica</i> Species. Molecular Plant-Microbe Interactions, 2014, 27, 286-295.	2.6	60
90	Chitin perception in plasmodesmata characterizes submembrane immune-signaling specificity in plants. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 9621-9629.	7.1	60

#	Article	IF	CITATIONS
91	Family-wide evaluation of RAPID ALKALINIZATION FACTOR peptides. Plant Physiology, 2021, 187, 996-1010.	4.8	59
92	Phospholipase C2 Affects MAMP-Triggered Immunity by Modulating ROS Production. Plant Physiology, 2017, 175, 970-981.	4.8	57
93	Enhanced Bacterial Wilt Resistance in Potato Through Expression of Arabidopsis EFR and Introgression of Quantitative Resistance from Solanum commersonii. Frontiers in Plant Science, 2017, 8, 1642.	3.6	54
94	Importance of tyrosine phosphorylation in receptor kinase complexes. Trends in Plant Science, 2015, 20, 269-272.	8.8	53
95	Plant Immunity: AvrPto Targets the Frontline. Current Biology, 2008, 18, R218-R220.	3.9	48
96	Specialized Roles of the Conserved Subunit OST3/6 of the Oligosaccharyltransferase Complex in Innate Immunity and Tolerance to Abiotic Stresses Â. Plant Physiology, 2013, 162, 24-38.	4.8	48
97	Autophosphorylation-based Calcium (Ca2+) Sensitivity Priming and Ca2+/Calmodulin Inhibition of Arabidopsis thaliana Ca2+-dependent Protein Kinase 28 (CPK28). Journal of Biological Chemistry, 2017, 292, 3988-4002.	3.4	48
98	TTL Proteins Scaffold Brassinosteroid Signaling Components at the Plasma Membrane to Optimize Signal Transduction in Arabidopsis. Plant Cell, 2019, 31, 1807-1828.	6.6	47
99	The grapevine (<i>Vitis vinifera</i>) LysM receptor kinases Vv <scp>LYK</scp> 1â€1 and Vv <scp>LYK</scp> 1â€2 mediate chitooligosaccharideâ€triggered immunity. Plant Biotechnology Journal, 2019, 17, 812-825.	8.3	44
100	Regulation of immune receptor kinase plasma membrane nanoscale organization by a plant peptide hormone and its receptors. ELife, 2022, 11, .	6.0	44
101	PP2A-3 interacts with ACR4 and regulates formative cell division in the <i>Arabidopsis</i> root. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 1447-1452.	7.1	43
102	High levels of cyclicâ€diâ€ <scp>GMP</scp> in plantâ€associated <scp><i>P</i></scp> <i>seudomonas</i> correlate with evasion of plant immunity. Molecular Plant Pathology, 2016, 17, 521-531.	4.2	42
103	Expression of the <i>Arabidopsis thaliana</i> immune receptor <i><scp>EFR</scp></i> in <i>Medicago truncatula</i> reduces infection by a root pathogenic bacterium, but not nitrogenâ€fixing rhizobial symbiosis. Plant Biotechnology Journal, 2019, 17, 569-579.	8.3	42
104	Protein phosphatase AP2C1 negatively regulates basal resistance and defense responses toPseudomonas syringae. Journal of Experimental Botany, 2017, 68, erw485.	4.8	41
105	Arabidopsis poly(A) polymerase <scp>PAPS</scp> 1 limits founderâ€cell recruitment to organ primordia and suppresses the salicylic acidâ€independent immune response downstream of <scp>EDS</scp> 1/ <scp>PAD</scp> 4. Plant Journal, 2014, 77, 688-699.	5.7	36
106	The Shoot Apical Meristem Regulatory Peptide CLV3 Does Not Activate Innate Immunity. Plant Cell, 2012, 24, 3186-3192.	6.6	35
107	Peptidoglycan Perception in Plants. PLoS Pathogens, 2015, 11, e1005275.	4.7	35
108	LRR-RLK family from two Citrus species: genome-wide identification and evolutionary aspects. BMC Genomics, 2016, 17, 623.	2.8	35

#	Article	IF	CITATIONS
109	Immunoprecipitation of Plasma Membrane Receptor-Like Kinases for Identification of Phosphorylation Sites and Associated Proteins. Methods in Molecular Biology, 2016, 1363, 133-144.	0.9	30
110	Large-scale identification of ubiquitination sites on membrane-associated proteins in <i>Arabidopsis thaliana</i> seedlings. Plant Physiology, 2021, 185, 1483-1488.	4.8	29
111	A <i>Lotus japonicus</i> cytoplasmic kinase connects Nod factor perception by the NFR5 LysM receptor to nodulation. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 14339-14348.	7.1	28
112	A conserved module regulates receptor kinase signalling in immunity and development. Nature Plants, 2022, 8, 356-365.	9.3	27
113	Opposing effects on two phases of defense responses from concerted actions of HSC70 and BON1 in Arabidopsis. Plant Physiology, 2015, 169, pp.00970.2015.	4.8	26
114	The <i>Arabidopsis</i> immune receptor EFR increases resistance to the bacterial pathogens <i>Xanthomonas</i> and <i>Xylella</i> in transgenic sweet orange. Plant Biotechnology Journal, 2021, 19, 1294-1296.	8.3	26
115	Lazarus1, a DUF300 Protein, Contributes to Programmed Cell Death Associated with Arabidopsis acd11 and the Hypersensitive Response. PLoS ONE, 2010, 5, e12586.	2.5	25
116	Flg22-Triggered Immunity Negatively Regulates Key BR Biosynthetic Genes. Frontiers in Plant Science, 2015, 6, 981.	3.6	25
117	Bacterial rhamnolipids and their 3-hydroxyalkanoate precursors activate <i>Arabidopsis</i> innate immunity through two independent mechanisms. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	25
118	Plant immunity: Crosstalk between plant immune receptors. Current Biology, 2021, 31, R796-R798.	3.9	24
119	Direct inhibition of phosphate transport by immune signaling in Arabidopsis. Current Biology, 2022, 32, 488-495.e5.	3.9	24
120	Combined roles of ethylene and endogenous peptides in regulating plant immunity and growth. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 5748-5749.	7.1	23
121	Mapping mutations in plant genomes with the user-friendly web application CandiSNP. Plant Methods, 2014, 10, 41.	4.3	23
122	Update on Receptors and Signaling. Plant Physiology, 2020, 182, 1527-1530.	4.8	20
123	Genotyping-by-sequencing-based identification of Arabidopsis pattern recognition receptor RLP32 recognizing proteobacterial translation initiation factor IF1. Nature Communications, 2022, 13, 1294.	12.8	20
124	Perception of a conserved family of plant signalling peptides by the receptor kinase HSL3. ELife, 0, 11, .	6.0	20
125	Vacuole Integrity Maintained by DUF300 Proteins Is Required for Brassinosteroid Signaling Regulation. Molecular Plant, 2018, 11, 553-567.	8.3	18
126	Carbonic anhydrases CA1 and CA4 function in atmospheric CO2-modulated disease resistance. Planta, 2020, 251, 75.	3.2	18

#	Article	IF	CITATIONS
127	Altered glycosylation of exported proteins, including surface immune receptors, compromises calcium and downstream signaling responses to microbe-associated molecular patterns in Arabidopsis thaliana. BMC Plant Biology, 2016, 16, 31.	3.6	16
128	Concerted actions of PRR- and NLR-mediated immunity. Essays in Biochemistry, 2022, 66, 501-511.	4.7	16
129	The Arabidopsis pattern recognition receptor EFR enhances fire blight resistance in apple. Horticulture Research, 2021, 8, 204.	6.3	13
130	Plant G-protein activation: connecting to plant receptor kinases. Cell Research, 2018, 28, 697-698.	12.0	12
131	Activation loop phosphorylation of a non-RD receptor kinase initiates plant innate immune signaling. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	12
132	A new receptor for LPS. Nature Immunology, 2015, 16, 340-341.	14.5	11
133	Class uncorrected errors as misconduct. Nature, 2016, 531, 173-173.	27.8	11
134	Importance of tyrosine phosphorylation for transmembrane signaling in plants. Biochemical Journal, 2021, 478, 2759-2774.	3.7	11
135	Broad application of a simple and affordable protocol for isolating plant RNA. BMC Research Notes, 2015, 8, 154.	1.4	10
136	Complex regulation of plant sex by peptides. Science, 2017, 358, 1544-1545.	12.6	10
137	The fungal subtilase AsES elicits a PTIâ€ike defence response in <i>Arabidopsis thaliana</i> plants independently of its enzymatic activity. Molecular Plant Pathology, 2020, 21, 147-159.	4.2	10
138	Evolution of chlorophyll degradation is associated with plant transition to land. Plant Journal, 2022, 109, 1473-1488.	5.7	10
139	Incorporating prior knowledge improves detection of differences in bacterial growth rate. BMC Systems Biology, 2015, 9, 60.	3.0	9
140	Widely Conserved Attenuation of Plant MAMP-Induced Calcium Influx by Bacteria Depends on Multiple Virulence Factors and May Involve Desensitization of Host Pattern Recognition Receptors. Molecular Plant-Microbe Interactions, 2019, 32, 608-621.	2.6	9
141	A novel allele of the <i>Arabidopsis thaliana</i> MACPF protein CAD1 results in deregulated immune signaling. Genetics, 2021, 217, .	2.9	9
142	Lumi-Map, a Real-Time Luciferase Bioluminescence Screen of Mutants Combined with MutMap, Reveals <i>Arabidopsis</i> Genes Involved in PAMP-Triggered Immunity. Molecular Plant-Microbe Interactions, 2020, 33, 1366-1380.	2.6	8
143	<i>Pseudomonas syringae</i> addresses distinct environmental challenges during plant infection through the coordinated deployment of polysaccharides. Journal of Experimental Botany, 2022, 73, 2206-2221.	4.8	8
144	Tyrosine-610 in the Receptor Kinase BAK1 Does Not Play a Major Role in Brassinosteroid Signaling or Innate Immunity. Frontiers in Plant Science, 2017, 8, 1273.	3.6	5

#	Article	IF	CITATIONS
145	Low-cost and High-throughput RNA-seq Library Preparation for Illumina Sequencing from Plant Tissue. Bio-protocol, 2020, 10, e3799.	0.4	5
146	An evergreen mind and a heart for the colors of fall. Journal of Experimental Botany, 2021, 72, 4625-4633.	4.8	4
147	Receptor Kinase Interactions: Complexity of Signalling. Signaling and Communication in Plants, 2012, , 145-172.	0.7	3
148	Engineering insect-free cereals. Nature Biotechnology, 2015, 33, 262-263.	17.5	2
149	Fungal pathogenesis: Host modulation every which way. Nature Microbiology, 2016, 1, 16075.	13.3	1
150	TTL Proteins Scaffold Brassinosteroid Signaling Components at the Plasma Membrane to Optimize Signal Transduction in Plant Cells. SSRN Electronic Journal, 0, , .	0.4	0