
Marisa Karow

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9543663/publications.pdf Version: 2024-02-01

MADISA KADOW

#	Article	IF	CITATIONS
1	MMP-2, MT1-MMP, and TIMP-2 are essential for the invasive capacity of human mesenchymal stem cells: differential regulation by inflammatory cytokines. Blood, 2007, 109, 4055-4063.	0.6	466
2	Identification and Successful Negotiation of a Metabolic Checkpoint in Direct Neuronal Reprogramming. Cell Stem Cell, 2016, 18, 396-409.	5.2	307
3	Reprogramming of Pericyte-Derived Cells of the Adult Human Brain into Induced Neuronal Cells. Cell Stem Cell, 2012, 11, 471-476.	5.2	282
4	Wnt Signaling Regulates the Invasion Capacity of Human Mesenchymal Stem Cells. Stem Cells, 2006, 24, 1892-1903.	1.4	143
5	The Wnt Signal Transduction Pathway in Stem Cells and Cancer Cells: Influence on Cellular Invasion. Stem Cell Reviews and Reports, 2007, 3, 18-29.	5.6	113
6	Direct pericyte-to-neuron reprogramming via unfolding of a neural stem cell-like program. Nature Neuroscience, 2018, 21, 932-940.	7.1	93
7	Nonviral genetic modification mediates effective transgene expression and functional RNA interference in human mesenchymal stem cells. Journal of Gene Medicine, 2005, 7, 718-728.	1.4	74
8	Analyzing the protease web in skin: meprin metalloproteases are activated specifically by KLK4, 5 and 8 vice versa leading to processing of proKLK7 thereby triggering its activation. Biological Chemistry, 2010, 391, 455-60.	1.2	73
9	Astrocytes and neurons share region-specific transcriptional signatures that confer regional identity to neuronal reprogramming. Science Advances, 2021, 7, .	4.7	65
10	Human Osteoblast–Derived Factors Induce Early Osteogenic Markers in Human Mesenchymal Stem Cells. Tissue Engineering - Part A, 2009, 15, 2397-2409.	1.6	39
11	Site-Specific Recombinase Strategy to Create Induced Pluripotent Stem Cells Efficiently with Plasmid DNA. Stem Cells, 2011, 29, 1696-1704.	1.4	37
12	Safe Genetic Modification of Cardiac Stem Cells Using a Site-Specific Integration Technique. Circulation, 2012, 126, S20-8.	1.6	37
13	The Gut-Brain Axis in Inflammatory Bowel Disease—Current and Future Perspectives. International Journal of Molecular Sciences, 2021, 22, 8870.	1.8	36
14	Wnt signalling in mouse mesenchymal stem cells: impact on proliferation, invasion and MMP expression. Journal of Cellular and Molecular Medicine, 2009, 13, 2506-2520.	1.6	32
15	The effects of a plant proteinase inhibitor from Enterolobium contortisiliquum on human tumor cell lines. Biological Chemistry, 2011, 392, 327-36.	1.2	30
16	Recombinase-Mediated Reprogramming and Dystrophin Gene Addition in mdx Mouse Induced Pluripotent Stem Cells. PLoS ONE, 2014, 9, e96279.	1.1	26
17	The therapeutic potential of phiC31 integrase as a gene therapy system. Expert Opinion on Biological Therapy, 2011, 11, 1287-1296.	1.4	22
18	LRP6 mediates Wnt/l²-catenin signaling and regulates adipogenic differentiation in human mesenchymal stem cells. International Journal of Biochemistry and Cell Biology, 2012, 44, 1970-1982.	1.2	22

MARISA KAROW

#	Article	IF	CITATIONS
19	Lineage-reprogramming of Pericyte-derived Cells of the Adult Human Brain into Induced Neurons. Journal of Visualized Experiments, 2014, , .	0.2	19
20	Mountaineering pericytes – A universal key to tissue repair?. BioEssays, 2013, 35, 771-774.	1.2	10
21	Reporter gene HEK 293 cells and WNT/Frizzled fusion proteins as tools to study WNT signaling pathways. Biological Chemistry, 2011, 392, 1011-20.	1.2	8
22	Cellular identity through the lens of direct lineage reprogramming. Current Opinion in Genetics and Development, 2021, 70, 97-103.	1.5	3
23	Natural and forced neurogenesis: similar and yet different?. Cell and Tissue Research, 2018, 371, 181-187.	1.5	1
24	Inâ€∓OXâ€icating neurogenesis. EMBO Journal, 2015, 34, 832-834.	3.5	0
25	Die Kunst des Neuronenschmiedens: Direkte Reprogrammierung somatischer Zellen in induzierte neuronale Zellen. E-Neuroforum, 2013, 19, 56-62.	0.2	Ο