Vladimir Pavlinek

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9543577/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Surface-modified antibacterial TiO2/Ag+ nanoparticles: Preparation and properties. Applied Surface Science, 2006, 252, 4154-4160.	3.1	212
2	MnO ₂ nanoflake/polyaniline nanorod hybrid nanostructures on graphene paper for high-performance flexible supercapacitor electrodes. Journal of Materials Chemistry A, 2015, 3, 17165-17171.	5.2	109
3	Electrorheological characteristics of polyaniline/titanate composite nanotube suspensions. Colloid and Polymer Science, 2009, 287, 435-441.	1.0	100
4	Improved thermooxidation and sedimentation stability of covalently-coated carbonyl iron particles with cholesteryl groups and their influence on magnetorheology. Journal of Colloid and Interface Science, 2013, 396, 146-151.	5.0	100
5	Synthesis of Silicone Elastomers Containing Silyl-Based Polymer-Grafted Carbonyl Iron Particles: An Efficient Way To Improve Magnetorheological, Damping, and Sensing Performances. Macromolecules, 2017, 50, 2189-2200.	2.2	97
6	Controlled synthesis of hierarchical polyaniline nanowires/ordered bimodal mesoporous carbon nanocomposites with high surface area for supercapacitor electrodes. Journal of Power Sources, 2013, 240, 544-550.	4.0	94
7	Conducting polypyrrole confined in ordered mesoporous silica SBA-15 channels: Preparation and its electrorheology. Microporous and Mesoporous Materials, 2006, 93, 263-269.	2.2	88
8	A facile controllable coating of carbonyl iron particles with poly(glycidyl methacrylate): a tool for adjusting MR response and stability properties. Journal of Materials Chemistry C, 2015, 3, 4646-4656.	2.7	86
9	Fabrication of polyaniline/mesoporous carbon/MnO2 ternary nanocomposites and their enhanced electrochemical performance for supercapacitors. Electrochimica Acta, 2012, 71, 27-32.	2.6	75
10	Synthesis and electrorheological characteristics of sea urchin-like TiO2 hollow spheres. Colloid and Polymer Science, 2011, 289, 799-805.	1.0	73
11	MnO2 nanoflakes/hierarchical porous carbon nanocomposites for high-performance supercapacitor electrodes. Electrochimica Acta, 2015, 164, 252-259.	2.6	73
12	Morphology-controllable synthesis of MnO2 hollow nanospheres and their supercapacitive performance. New Journal of Chemistry, 2013, 37, 722.	1.4	68
13	The electrorheological efficiency of polyaniline particles with various conductivities suspended in silicone oil. Colloid and Polymer Science, 2009, 287, 403-412.	1.0	66
14	Surfactant-assisted polypyrrole/titanate composite nanofibers: Morphology, structure and electrical properties. Synthetic Metals, 2008, 158, 953-957.	2.1	62
15	Synthesis and structural properties of polypyrrole/nano-Y 2 O 3 conducting composite. Applied Surface Science, 2006, 253, 1736-1740.	3.1	59
16	Novel synthesis of core–shell urchin-like ZnO coated carbonyl iron microparticles and their magnetorheological activity. RSC Advances, 2014, 4, 996-1003.	1.7	58
17	A rheological evaluation of steady shear magnetorheological flow behavior using three-parameter viscoplastic models. Journal of Rheology, 2016, 60, 687-694.	1.3	58
18	Electrorheological properties of new mesoporous material with conducting polypyrrole in mesoporous silica. Microporous and Mesoporous Materials, 2006, 94, 193-199.	2.2	57

VLADIMIR PAVLINEK

#	Article	IF	CITATIONS
19	Effect of carrageenan type on viscoelastic properties of processed cheese. Food Hydrocolloids, 2008, 22, 1054-1061.	5.6	57
20	Synthesis and characterization of new mesoporous material with conducting polypyrrole confined in mesoporous silica. Materials Chemistry and Physics, 2006, 98, 504-508.	2.0	54
21	MnO2/polyaniline hybrid nanostructures on carbon cloth for supercapacitor electrodes. Journal of Solid State Electrochemistry, 2016, 20, 1459-1467.	1.2	54
22	The effect of polyaniline layer deposited on silica particles on electrorheological and dielectric properties of their silicone–oil suspensions. Physica A: Statistical Mechanics and Its Applications, 2005, 353, 21-28.	1.2	53
23	Plasma-treated carbonyl iron particles as a dispersed phase in magnetorheological fluids. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2011, 387, 99-103.	2.3	53
24	An effect of carbonization on the electrorheology of poly(p-phenylenediamine). Carbon, 2013, 63, 187-195.	5.4	49
25	Electrorheology of aniline oligomers. Colloid and Polymer Science, 2013, 291, 2079-2086.	1.0	49
26	The observation of a conductivity threshold on the electrorheological effect of p-phenylenediamine oxidized with p-benzoquinone. Journal of Materials Chemistry C, 2015, 3, 9973-9980.	2.7	48
27	Tailoring the magnetic properties and magnetorheological behavior of spinel nanocrystalline cobalt ferrite by varying annealing temperature. Dalton Transactions, 2014, 43, 6919.	1.6	43
28	Tunable electrorheological performance of silicone oil suspensions based on controllably reduced graphene oxide by surface initiated atom transfer radical polymerization of poly(glycidyl) Tj ETQq0 0 0 rgBT /Ove	rlo zlo 10 T	f 5 0 2377 Td (
29	Replacement of traditional emulsifying salts by selected hydrocolloids in processed cheese production. International Dairy Journal, 2010, 20, 336-343.	1.5	39
30	Construction of Hierarchical CuO/Cu2O@NiCo2S4 Nanowire Arrays on Copper Foam for High Performance Supercapacitor Electrodes. Nanomaterials, 2017, 7, 273.	1.9	38
31	Synthesis and magnetorheological characteristics of ribbonâ€like, polypyrroleâ€eoated carbonyl iron suspensions under oscillatory shear. Journal of Applied Polymer Science, 2013, 128, 2977-2982.	1.3	37
32	The chemical stability and cytotoxicity of carbonyl iron particles grafted with poly(glycidyl) Tj ETQq0 0 0 rgBT /O 72816-72824.	verlock 10 1.7	0 Tf 50 227 To 37
33	Graphene oxide reduction during surface-initiated atom transfer radical polymerization of glycidyl methacrylate: Controlling electro-responsive properties. Chemical Engineering Journal, 2016, 283, 717-720.	6.6	36
34	Polystyrene/multi-wall carbon nanotube composites prepared by suspension polymerization and their electrorheological behavior. Current Applied Physics, 2009, 9, 184-188.	1.1	32
35	Enhancement of radio-absorbing properties and thermal conductivity of polysiloxane-based magnetorheological elastomers by the alignment of filler particles. Smart Materials and Structures, 2017, 26, 095005.	1.8	31
36	SYNTHESIS OF TITANATE/POLYPYRROLE COMPOSITE ROD-LIKE PARTICLES AND THE ROLE OF CONDUCTING POLYMER ON ELECTRORHEOLOGICAL EFFICIENCY. International Journal of Modern Physics B, 2012, 26, 1250007.	1.0	30

VLADIMIR PAVLINEK

#	Article	IF	CITATIONS
37	Structural and electrorheological properties of mesoporous silica modified with triethanolamine. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2008, 318, 169-174.	2.3	28
38	The effect of selected phosphate emulsifying salts on viscoelastic properties of processed cheese. LWT - Food Science and Technology, 2010, 43, 1220-1225.	2.5	28
39	Facile fabrication and characterization of novel polyaniline/titanate composite nanotubes directed by block copolymer. European Polymer Journal, 2007, 43, 3780-3786.	2.6	27
40	Effects of macropore size on structural and electrochemical properties of hierarchical porous carbons. Journal of Materials Science, 2012, 47, 6444-6450.	1.7	27
41	Magnetorheological suspensions based on modified carbonyl iron particles with an extremely thin poly(<i>n</i> -butyl acrylate) layer and their enhanced stability properties. Smart Materials and Structures, 2016, 25, 085011.	1.8	27
42	Electromagnetic, magnetorheological and stability properties of polysiloxane elastomers based on silane–modified carbonyl iron particles with enhanced wettability. Smart Materials and Structures, 2017, 26, 105003.	1.8	27
43	The enhanced magnetorheological performance of carbonyl iron suspensions using magnetic Fe ₃ O ₄ /ZHS hybrid composite sheets. RSC Advances, 2015, 5, 19213-19219.	1.7	26
44	Effect of hydrophilicity of polyaniline particles on their electrorheology: Steady flow and dynamic behaviour. Journal of Colloid and Interface Science, 2010, 346, 236-240.	5.0	25
45	The effect of pectin concentration on viscoelastic and sensory properties of processed cheese. International Journal of Food Science and Technology, 2008, 43, 1663-1670.	1.3	24
46	Surface-initiated atom transfer radical polymerization from graphene oxide: A way towards fine tuning of electric conductivity and electro-responsive capabilities. Materials Letters, 2018, 211, 138-141.	1.3	23
47	The storage stability of polyvinylbutyral solutions from an electrospinnability standpoint. Polymer Degradation and Stability, 2014, 105, 134-139.	2.7	22
48	The Impact of Polymer Grafting from a Graphene Oxide Surface on Its Compatibility with a PDMS Matrix and the Light-Induced Actuation of the Composites. Polymers, 2017, 9, 264.	2.0	22
49	Rheological Behavior of Poly(methyl methacrylate) Dispersions Stabilized by a Diblock Copolymer. 2. Positive and Negative Electrorheological Effectâ€. Langmuir, 2000, 16, 1447-1449.	1.6	20
50	Preparation and electrorheology of new mesoporous polypyrrole/MCM-41 suspensions. Journal of Materials Science, 2006, 41, 5047-5049.	1.7	20
51	Carbonyl iron coated with a sulfobetaine moiety as a biocompatible system and the magnetorheological performance of its silicone oil suspensions. RSC Advances, 2016, 6, 32823-32830.	1.7	20
52	Electrorheological properties of suspensions of silica nanoparticles modified by urea and N,N-dimethylformamide. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2007, 297, 142-146.	2.3	18
53	Effect of field strength and temperature on viscoelastic properties of electrorheological suspensions of urea-modified silica particles. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2008, 316, 89-94.	2.3	18
54	Effect of addition of selected solid cosolutes on viscoelastic properties of model processed cheese containing pectin. Food Hydrocolloids, 2009, 23, 2078-2084.	5.6	17

VLADIMIR PAVLINEK

#	Article	IF	CITATIONS
55	Synthesis and electrorheological characteristics of titanate nanotube suspensions under oscillatory shear. Journal of Industrial and Engineering Chemistry, 2009, 15, 550-554.	2.9	17
56	Structure changes of electrorheological fluids based on polyaniline particles with various hydrophilicities and time dependence of shear stress and conductivity during flow. Colloid and Polymer Science, 2011, 289, 409-414.	1.0	17
57	The effect of selected hydrocolloids on the rheological properties of processed cheese analogues made with vegetable fats during the cooling phase. International Journal of Dairy Technology, 2013, 66, 484-489.	1.3	17
58	Temperature-dependent electrorheological effect and its description with respect to dielectric spectra. Journal of Intelligent Material Systems and Structures, 2016, 27, 880-886.	1.4	17
59	Template-free synthesis of hollow poly(<i>o</i> -anisidine) microspheres and their electrorheological characteristics. Smart Materials and Structures, 2011, 20, 065014.	1.8	16
60	Conductivity of flowing polyaniline suspensions in electric field. Colloid and Polymer Science, 2008, 286, 1403-1409.	1.0	14
61	Controlled synthesis of mesoporous carbon nanosheets and their enhanced supercapacitive performance. Journal of Solid State Electrochemistry, 2013, 17, 1677-1684.	1.2	14
62	Effect of phenolic resin infiltration content on the structural and electrochemical properties of hierarchical porous carbons. Journal of Materials Science, 2014, 49, 7489-7496.	1.7	12
63	The Effect of PVAc Solution Viscosity on Diameter of PVAc Nanofibres Prepared by Technology of Electrospinning. AIP Conference Proceedings, 2011, , .	0.3	11
64	The influence of sonication of poly(ethylene oxide) solutions to the quality of resulting electrospun nanofibrous mats. Polymer Degradation and Stability, 2016, 126, 101-106.	2.7	10
65	Synthesis and Structural Characterization of Polyaniline/Mesoporous Carbon Nanocomposite. International Journal of Polymer Analysis and Characterization, 2008, 13, 25-36.	0.9	8
66	The effect of the combination of reducing and oxidising agents on the viscoelastic properties of dough and sensory characteristics of buns. Journal of the Science of Food and Agriculture, 2010, 90, 1681-1687.	1.7	8
67	INCREASING ELECTRORHEOLOGICAL RESPONSE OF PARTICLES: THE EFFECT OF CONDUCTIVE POLYMER. International Journal of Modern Physics B, 2007, 21, 4883-4889.	1.0	5
68	The effect of compatibility of suspension particles with the oil medium on electrorheological efficiency. Journal of Intelligent Material Systems and Structures, 2012, 23, 1055-1059.	1.4	5
69	Magnetorheological behaviour and electrospinning of poly(ethylene oxide) suspensions with magnetic nanoparticles. Journal of Intelligent Material Systems and Structures, 2016, 27, 898-903.	1.4	5
70	THE EFFECT OF POLYPYRROLE LOADING ON THE ELECTRORHEOLOGICAL PROPERTIES OF POLYPYRROLE/SBA-15 SUSPENSIONS. International Journal of Modern Physics B, 2007, 21, 5026-5032.	1.0	3
71	Core-shell Structured Polypyrrole-coated Magnetic Carbonyl Iron Microparticles and their Magnetorheology. , 2011, , .		3
72	ELECTRORHEOLOGICAL AND DIELECTRIC PROPERTIES OF UREA/ SIO ₂ NANOCOMPOSITE SUSPENSIONS MODIFIED BY N , N -DIMETHYLFORMAMIDE. International Journal of Modern Physics B, 2007, 21, 4782-4789.	1.0	2

#	Article	IF	CITATIONS
73	The influence of reducing and oxidising agents on the rheology of wheat flour dough. Acta Universitatis Agriculturae Et Silviculturae Mendelianae Brunensis, 2014, 56, 163-170.	0.2	2
74	Smart composites based on controllably grafted graphene oxide particles and elastomeric matrix with sensing capability. , 2017, , .		1
75	Impact of reducing and oxidising agents on the wheat flour dough dynamic rheological properties. Acta Universitatis Agriculturae Et Silviculturae Mendelianae Brunensis, 2014, 59, 191-198.	0.2	1
76	Electrorheological Properties of Suspensions of Polypyrrole Ribbon Particles in Silicone Oil. , 2011, , .		0
77	A note on secondary electrorheological patterns. Journal of Intelligent Material Systems and Structures, 2012, 23, 1061-1066.	1.4	0
78	Comparison of electrorheological characteristics obtained in two geometrical arrangements: Parallel plates and concentric cylinders. AIP Conference Proceedings, 2015, , .	0.3	0
79	THE EFFECT OF POLYPYRROLE LOADING ON THE ELECTRORHEOLOGICAL PROPERTIES OF POLYPYRROLE/SBA-15 SUSPENSIONS. , 2007, , .		0
80	The effect of addition of selected carrageenans on viscoelastic properties of model processed cheese spreads. Acta Universitatis Agriculturae Et Silviculturae Mendelianae Brunensis, 2014, 55, 51-58.	0.2	0
81	Light-induced and sensing capabilities of SI-ATRP modified graphene oxide particles in elastomeric matrix. Proceedings of SPIE, 2017, , .	0.8	0