Katarzyna Pogoda

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/954290/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Control of cell morphology and differentiation by substrates with independently tunable elasticity and viscous dissipation. Nature Communications, 2018, 9, 449.	5.8	301
2	Cancer cell detection in tissue sections using AFM. Archives of Biochemistry and Biophysics, 2012, 518, 151-156.	1.4	298
3	Cancer cell recognition – Mechanical phenotype. Micron, 2012, 43, 1259-1266.	1.1	243
4	Vimentin protects cells against nuclear rupture and DNA damage during migration. Journal of Cell Biology, 2019, 218, 4079-4092.	2.3	155
5	Compression stiffening of brain and its effect on mechanosensing by glioma cells. New Journal of Physics, 2014, 16, 075002.	1.2	148
6	Tumor stiffening reversion through collagen crosslinking inhibition improves T cell migration and anti-PD-1 treatment. ELife, 2021, 10, .	2.8	127
7	Depth-sensing analysis of cytoskeleton organization based on AFM data. European Biophysics Journal, 2012, 41, 79-87.	1.2	118
8	Emergence of tissue-like mechanics from fibrous networks confined by close-packed cells. Nature, 2019, 573, 96-101.	13.7	118
9	Augmentation of integrin-mediated mechanotransduction by hyaluronic acid. Biomaterials, 2014, 35, 71-82.	5.7	97
10	Soft Substrates Containing Hyaluronan Mimic the Effects of Increased Stiffness on Morphology, Motility, and Proliferation of Glioma Cells. Biomacromolecules, 2017, 18, 3040-3051.	2.6	70
11	Loss of Vimentin Enhances Cell Motility through Small Confining Spaces. Small, 2019, 15, e1903180.	5.2	59
12	Candidacidal Activity of Selected Ceragenins and Human Cathelicidin LL-37 in Experimental Settings Mimicking Infection Sites. PLoS ONE, 2016, 11, e0157242.	1.1	59
13	Glial Tissue Mechanics and Mechanosensing by Glial Cells. Frontiers in Cellular Neuroscience, 2018, 12, 25.	1.8	48
14	Tissue Rheology as a Possible Complementary Procedure to Advance Histological Diagnosis of Colon Cancer. ACS Biomaterials Science and Engineering, 2020, 6, 5620-5631.	2.6	43
15	Myosin IIA suppresses glioblastoma development in a mechanically sensitive manner. Proceedings of the United States of America, 2019, 116, 15550-15559.	3.3	39
16	Indenting soft samples (hydrogels and cells) with cantilevers possessing various shapes of probing tip. European Biophysics Journal, 2020, 49, 485-495.	1.2	36
17	A novel method to make viscoelastic polyacrylamide gels for cell culture and traction force microscopy. APL Bioengineering, 2020, 4, 036104.	3.3	36
18	Age-Related Changes in the Mechanical Properties of Human Fibroblasts and Its Prospective Reversal After Anti-Wrinkle Tripeptide Treatment. International Journal of Peptide Research and Therapeutics, 2014, 20, 77-85	0.9	32

KATARZYNA POGODA

#	Article	IF	CITATIONS
19	Sporicidal activity of ceragenin CSA-13 against Bacillus subtilis. Scientific Reports, 2017, 7, 44452.	1.6	27
20	Role of a Kinesin Motor in Cancer Cell Mechanics. Nano Letters, 2019, 19, 7691-7702.	4.5	26
21	Inhibition of inflammatory response in human keratinocytes by magnetic nanoparticles functionalized with PBP10 peptide derived from the PIP2-binding site of human plasma gelsolin. Journal of Nanobiotechnology, 2019, 17, 22.	4.2	25
22	Lateral distribution of phosphatidylinositol 4,5-bisphosphate in membranes regulates formin- and ARP2/3-mediated actin nucleation. Journal of Biological Chemistry, 2019, 294, 4704-4722.	1.6	22
23	Mid-infrared spectroscopy and microscopy of subcellular structures in eukaryotic cells with atomic force microscopy – infrared spectroscopy. RSC Advances, 2018, 8, 2786-2794.	1.7	21
24	Unique Role of Vimentin Networks in Compression Stiffening of Cells and Protection of Nuclei from Compressive Stress. Nano Letters, 2022, 22, 4725-4732.	4.5	21
25	The Atr-Chek1 pathway inhibits axon regeneration in response to Piezo-dependent mechanosensation. Nature Communications, 2021, 12, 3845.	5.8	19
26	Enhancement of Pulmozyme activity in purulent sputum by combination with poly-aspartic acid or gelsolin. Journal of Cystic Fibrosis, 2015, 14, 587-593.	0.3	18
27	Dynamic Tuning of Viscoelastic Hydrogels with Carbonyl Iron Microparticles Reveals the Rapid Response of Cells to Three-Dimensional Substrate Mechanics. ACS Applied Materials & Interfaces, 2021, 13, 20947-20959.	4.0	15
28	<p>Nanomechanics and Histopathology as Diagnostic Tools to Characterize Freshly Removed Human Brain Tumors</p> . International Journal of Nanomedicine, 2020, Volume 15, 7509-7521.	3.3	14
29	Loops <i>versus</i> lines and the compression stiffening of cells. Soft Matter, 2020, 16, 4389-4406.	1.2	14
30	Elasticity-dependent response of malignant cells to viscous dissipation. Biomechanics and Modeling in Mechanobiology, 2021, 20, 145-154.	1.4	14
31	Compression stiffening in biological tissues: On the possibility of classic elasticity origins. Physical Review E, 2019, 99, 052413.	0.8	13
32	Contact Microscopy using a Compact Laser Produced Plasma Soft X-Ray Source. Acta Physica Polonica A, 2016, 129, 237-240.	0.2	13
33	Assessment of aliphatic poly(ester-carbonate-urea-urethane)s potential as materials for biomedical application. Journal of Polymer Research, 2017, 24, 1.	1.2	12
34	Assessment of cellular response to drug/nanoparticles conjugates treatment through FTIR imaging and PLS regression study. Sensors and Actuators B: Chemical, 2020, 313, 128039.	4.0	12
35	Stiffening of bacteria cells as a first manifestation of bactericidal attack. Micron, 2017, 101, 95-102.	1.1	11
36	In search of the correlation between nanomechanical and biomolecular properties of prostate cancer cells with different metastatic potential. Archives of Biochemistry and Biophysics, 2021, 697, 108718	1.4	8

Katarzyna Pogoda

#	Article	IF	CITATIONS
37	Inhomogeneity of stiffness and density of the extracellular matrix within the leukoplakia of human oral mucosa as potential physicochemical factors leading to carcinogenesis. Translational Oncology, 2021, 14, 101105.	1.7	7
38	Compressive tumours cause neuronal damage. Nature Biomedical Engineering, 2019, 3, 171-172.	11.6	6
39	A Novel Method to Make Polyacrylamide Gels with Mechanical Properties Resembling those of Biological Tissues. Bio-protocol, 2021, 11, e4131.	0.2	5
40	The Impact of Preprocessing Methods for a Successful Prostate Cell Lines Discrimination Using Partial Least Squares Regression and Discriminant Analysis Based on Fourier Transform Infrared Imaging. Cells, 2021, 10, 953.	1.8	5
41	Human Vimentin Layers on Solid Substrates: Adsorption Kinetics and Corona Formation Investigations. Biomacromolecules, 2022, 23, 3308-3317.	2.6	4
42	Magnetic field tuning of mechanical properties of ultrasoft PDMS-based magnetorheological elastomers for biological applications. Multifunctional Materials, 2021, 4, 035001.	2.4	3
43	Physics Comes to the Aid of Medicine—Clinically-Relevant Microorganisms through the Eyes of Atomic Force Microscope. Pathogens, 2020, 9, 969.	1.2	2
44	The search for new sporicidal agents for medical use: where are we?. Future Microbiology, 2017, 12, 735-737.	1.0	1
45	Modification of Polymer Substrates with Extreme Ultraviolet - Potential Application in Cancer Cell Identification. Acta Physica Polonica A, 2018, 133, 283-285.	0.2	1
46	X-ray microbeam stand-alone facility for cultured cells irradiation. Nuclear Instruments & Methods in Physics Research B, 2017, 394, 50-60.	0.6	0