Lingpu Meng

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/954270/publications.pdf

Version: 2024-02-01

516710 552781 28 656 16 26 citations g-index h-index papers 28 28 28 499 docs citations times ranked citing authors all docs

#	Article	IF	Citations
1	Chain dynamics and crystalline network structure of poly[<i>R</i> -3-hydroxybutyrate- <i>co</i> -4-hydroxybutyrate] as revealed by solid-state NMR. Soft Matter, 2021, 17, 4195-4203.	2.7	5
2	A novel carboxylated polyacrylonitrile nanofibrous membrane with high adsorption capacity for fluoride removal from water. Journal of Hazardous Materials, 2021, 411, 125113.	12.4	37
3	Stretch-Induced Reverse Brill Transition in Polyamide 46. Macromolecules, 2020, 53, 11153-11165.	4.8	21
4	Stretch-Induced Intermediate Structures and Crystallization of Poly(dimethylsiloxane): The Effect of Filler Content. Macromolecules, 2020, 53, 719-730.	4.8	23
5	Recent advances in post-stretching processing of polymer films with <i>in situ</i> synchrotron radiation X-ray scattering. Soft Matter, 2020, 16, 3599-3612.	2.7	29
6	Preparation of Polyethylene and Ethylene/Methacrylic Acid Copolymer Blend Films with Tunable Surface Properties through Manipulating Processing Parameters during Film Blowing. Polymers, 2019, 11, 1565.	4.5	13
7	<i>In situ $\langle i \rangle$ characterization of strain-induced crystallization of natural rubber by synchrotron radiation wide-angle X-ray diffraction: construction of a crystal network at low temperatures. Soft Matter, 2019, 15, 734-743.</i>	2.7	27
8	Synergistic and Competitive Effects of Temperature and Flow on Crystallization of Polyethylene during Film Blowing. ACS Applied Polymer Materials, 2019, 1, 1590-1603.	4.4	22
9	Morphology diagram of PE gel films in wide range temperatureâ€strain space: An in situ SAXS and WAXS study. Journal of Polymer Science, Part B: Polymer Physics, 2019, 57, 748-757.	2.1	7
10	Frustrating Strain-Induced Crystallization of Natural Rubber with Biaxial Stretch. ACS Applied Materials & Samp; Interfaces, 2019, 11, 47535-47544.	8.0	43
11	Structural Evolution of UHMWPE Fibers during Prestretching Far and Near Melting Temperature: An In Situ Synchrotron Radiation Small―and Wideâ€Angle Xâ€Ray Scattering Study. Macromolecular Materials and Engineering, 2018, 303, 1700493.	3.6	18
12	Structural Evolution of Hard-Elastic Isotactic Polypropylene Film during Uniaxial Tensile Deformation: The Effect of Temperature. Macromolecules, 2018, 51, 2690-2705.	4.8	82
13	Stretchâ€Induced Melting and Recrystallization of Polyethyleneâ€Plasticizer Film Studied by ⟨i⟩In Situ⟨ i⟩ Xâ€Ray Scattering: A Thermodynamic Point of View. Journal of Polymer Science, Part B: Polymer Physics, 2018, 56, 1521-1528.	2.1	4
14	A realâ€time WAXS and SAXS study of the structural evolution of LLDPE bubble. Journal of Polymer Science, Part B: Polymer Physics, 2018, 56, 1404-1412.	2.1	13
15	Counterion-Induced Nanosheet-to-Nanofilament Transition of Lyotropic Bent-Core Liquid Crystals. Langmuir, 2018, 34, 13006-13013.	3.5	2
16	Stretch-Induced Crystallization and Phase Transitions of Poly(dimethylsiloxane) at Low Temperatures: An <i>in Situ</i> Synchrotron Radiation Wide-Angle X-ray Scattering Study. Macromolecules, 2018, 51, 8424-8434.	4.8	25
17	From Molecular Entanglement Network to Crystal-Cross-Linked Network and Crystal Scaffold during Film Blowing of Polyethylene: An in Situ Synchrotron Radiation Small- and Wide-Angle X-ray Scattering Study. Macromolecules, 2018, 51, 4350-4362.	4.8	43
18	Time-resolved orientation detection system with quantum cascade lasers. Review of Scientific Instruments, 2018, 89, 073101.	1.3	1

#	Article	IF	CITATION
19	Coupling of Multiscale Orderings during Flow-Induced Crystallization of Isotactic Polypropylene. Macromolecules, 2017, 50, 1991-1997.	4.8	40
20	Structural and morphological transitions in extension-induced crystallization of poly(1-butene) melt. Soft Matter, 2017, 13, 3639-3648.	2.7	30
21	Transition from chain- to crystal-network in extension induced crystallization of isotactic polypropylene. Journal of Rheology, 2017, 61, 589-599.	2.6	14
22	Deformation mechanism of iPP under uniaxial stretching over a wide temperature range: An in-situ synchrotron radiation SAXS/WAXS study. Polymer, 2017, 118, 12-21.	3.8	53
23	Stabilization Mechanism of Micropore in Highâ€Density Polyethylene: A Comparison between Thermal and Mechanical Pathways. Macromolecular Materials and Engineering, 2017, 302, 1700178.	3.6	10
24	Preparation of Highly Oriented Polyethylene Precursor Film with Fibril and Its Influence on Microporous Membrane Formation. Macromolecular Chemistry and Physics, 2016, 217, 974-986.	2.2	12
25	Strain and temperature dependence of deformation mechanism of lamellar stacks in HDPE and its guidance on microporous membrane preparation. Polymer, 2016, 105, 264-275.	3.8	38
26	A small-angle x-ray scattering system with a vertical layout. Review of Scientific Instruments, 2014, 85, 125110.	1.3	9
27	How flow affects crystallization in a heterogeneous polyethylene oxide melt. RSC Advances, 2014, 4, 9632.	3.6	7
28	A simple constrained uniaxial tensile apparatus for in situ investigation of film stretching processing. Review of Scientific Instruments, 2013, 84, 115104.	1.3	28