Lingpu Meng

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/954270/publications.pdf Version: 2024-02-01

LINCELL MENC

#	Article	IF	CITATIONS
1	Structural Evolution of Hard-Elastic Isotactic Polypropylene Film during Uniaxial Tensile Deformation: The Effect of Temperature. Macromolecules, 2018, 51, 2690-2705.	4.8	82
2	Deformation mechanism of iPP under uniaxial stretching over a wide temperature range: An in-situ synchrotron radiation SAXS/WAXS study. Polymer, 2017, 118, 12-21.	3.8	53
3	From Molecular Entanglement Network to Crystal-Cross-Linked Network and Crystal Scaffold during Film Blowing of Polyethylene: An in Situ Synchrotron Radiation Small- and Wide-Angle X-ray Scattering Study. Macromolecules, 2018, 51, 4350-4362.	4.8	43
4	Frustrating Strain-Induced Crystallization of Natural Rubber with Biaxial Stretch. ACS Applied Materials & Interfaces, 2019, 11, 47535-47544.	8.0	43
5	Coupling of Multiscale Orderings during Flow-Induced Crystallization of Isotactic Polypropylene. Macromolecules, 2017, 50, 1991-1997.	4.8	40
6	Strain and temperature dependence of deformation mechanism of lamellar stacks in HDPE and its guidance on microporous membrane preparation. Polymer, 2016, 105, 264-275.	3.8	38
7	A novel carboxylated polyacrylonitrile nanofibrous membrane with high adsorption capacity for fluoride removal from water. Journal of Hazardous Materials, 2021, 411, 125113.	12.4	37
8	Structural and morphological transitions in extension-induced crystallization of poly(1-butene) melt. Soft Matter, 2017, 13, 3639-3648.	2.7	30
9	Recent advances in post-stretching processing of polymer films with <i>in situ</i> synchrotron radiation X-ray scattering. Soft Matter, 2020, 16, 3599-3612.	2.7	29
10	A simple constrained uniaxial tensile apparatus for in situ investigation of film stretching processing. Review of Scientific Instruments, 2013, 84, 115104.	1.3	28
11	<i>In situ</i> characterization of strain-induced crystallization of natural rubber by synchrotron radiation wide-angle X-ray diffraction: construction of a crystal network at low temperatures. Soft Matter, 2019, 15, 734-743.	2.7	27
12	Stretch-Induced Crystallization and Phase Transitions of Poly(dimethylsiloxane) at Low Temperatures: An <i>in Situ</i> Synchrotron Radiation Wide-Angle X-ray Scattering Study. Macromolecules, 2018, 51, 8424-8434.	4.8	25
13	Stretch-Induced Intermediate Structures and Crystallization of Poly(dimethylsiloxane): The Effect of Filler Content. Macromolecules, 2020, 53, 719-730.	4.8	23
14	Synergistic and Competitive Effects of Temperature and Flow on Crystallization of Polyethylene during Film Blowing. ACS Applied Polymer Materials, 2019, 1, 1590-1603.	4.4	22
15	Stretch-Induced Reverse Brill Transition in Polyamide 46. Macromolecules, 2020, 53, 11153-11165.	4.8	21
16	Structural Evolution of UHMWPE Fibers during Prestretching Far and Near Melting Temperature: An In Situ Synchrotron Radiation Small―and Wideâ€Angle Xâ€Ray Scattering Study. Macromolecular Materials and Engineering, 2018, 303, 1700493.	3.6	18
17	Transition from chain- to crystal-network in extension induced crystallization of isotactic polypropylene. Journal of Rheology, 2017, 61, 589-599.	2.6	14
18	A realâ€ŧime WAXS and SAXS study of the structural evolution of LLDPE bubble. Journal of Polymer Science, Part B: Polymer Physics, 2018, 56, 1404-1412.	2.1	13

Lingpu Meng

#	Article	IF	CITATIONS
19	Preparation of Polyethylene and Ethylene/Methacrylic Acid Copolymer Blend Films with Tunable Surface Properties through Manipulating Processing Parameters during Film Blowing. Polymers, 2019, 11, 1565.	4.5	13
20	Preparation of Highly Oriented Polyethylene Precursor Film with Fibril and Its Influence on Microporous Membrane Formation. Macromolecular Chemistry and Physics, 2016, 217, 974-986.	2.2	12
21	Stabilization Mechanism of Micropore in Highâ€Đensity Polyethylene: A Comparison between Thermal and Mechanical Pathways. Macromolecular Materials and Engineering, 2017, 302, 1700178.	3.6	10
22	A small-angle x-ray scattering system with a vertical layout. Review of Scientific Instruments, 2014, 85, 125110.	1.3	9
23	How flow affects crystallization in a heterogeneous polyethylene oxide melt. RSC Advances, 2014, 4, 9632.	3.6	7
24	Morphology diagram of PE gel films in wide range temperatureâ€strain space: An in situ SAXS and WAXS study. Journal of Polymer Science, Part B: Polymer Physics, 2019, 57, 748-757.	2.1	7
25	Chain dynamics and crystalline network structure of poly[<i>R</i> -3-hydroxybutyrate- <i>co</i> -4-hydroxybutyrate] as revealed by solid-state NMR. Soft Matter, 2021, 17, 4195-4203.	2.7	5
26	Stretchâ€Induced Melting and Recrystallization of Polyethyleneâ€Plasticizer Film Studied by <i>In Situ</i> Xâ€Ray Scattering: A Thermodynamic Point of View. Journal of Polymer Science, Part B: Polymer Physics, 2018, 56, 1521-1528.	2.1	4
27	Counterion-Induced Nanosheet-to-Nanofilament Transition of Lyotropic Bent-Core Liquid Crystals. Langmuir, 2018, 34, 13006-13013.	3.5	2
28	Time-resolved orientation detection system with quantum cascade lasers. Review of Scientific Instruments, 2018, 89, 073101.	1.3	1