Dmitry Ivanov

List of Publications by Citations

Source: https://exaly.com/author-pdf/9542613/dmitry-ivanov-publications-by-citations.pdf

Version: 2024-04-28

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

 212
 10,496
 55
 100

 papers
 citations
 h-index
 g-index

 220
 13,818
 3.4
 8.48

 ext. papers
 ext. citations
 avg, IF
 L-index

#	Paper	IF	Citations
212	Predicting the impacts of epidemic outbreaks on global supply chains: A simulation-based analysis on the coronavirus outbreak (COVID-19/SARS-CoV-2) case. <i>Transportation Research, Part E: Logistics and Transportation Review,</i> 2020 , 136, 101922	9	716
211	The impact of digital technology and Industry 4.0 on the ripple effect and supply chain risk analytics. <i>International Journal of Production Research</i> , 2019 , 57, 829-846	7.8	549
210	Viability of intertwined supply networks: extending the supply chain resilience angles towards survivability. A position paper motivated by COVID-19 outbreak. <i>International Journal of Production Research</i> , 2020 , 58, 2904-2915	7.8	495
209	Review of quantitative methods for supply chain resilience analysis. <i>Transportation Research, Part E: Logistics and Transportation Review,</i> 2019 , 125, 285-307	9	343
208	A dynamic model and an algorithm for short-term supply chain scheduling in the smart factory industry 4.0. <i>International Journal of Production Research</i> , 2016 , 54, 386-402	7.8	338
207	The Ripple effect in supply chains: trade-off <code>Bfficiency-flexibility-resilienceO</code> n disruption management. <i>International Journal of Production Research</i> , 2014 , 52, 2154-2172	7.8	330
206	Ripple effect in the supply chain: an analysis and recent literature. <i>International Journal of Production Research</i> , 2018 , 56, 414-430	7.8	316
205	Literature review on disruption recovery in the supply chain*. <i>International Journal of Production Research</i> , 2017 , 55, 6158-6174	7.8	296
204	Viable supply chain model: integrating agility, resilience and sustainability perspectives-lessons from and thinking beyond the COVID-19 pandemic. <i>Annals of Operations Research</i> , 2020 , 1-21	3.2	284
203	Impacts of epidemic outbreaks on supply chains: mapping a research agenda amid the COVID-19 pandemic through a structured literature review. <i>Annals of Operations Research</i> , 2020 , 1-38	3.2	256
202	A digital supply chain twin for managing the disruption risks and resilience in the era of Industry 4.0. <i>Production Planning and Control</i> , 2021 , 32, 775-788	4.3	238
201	A multi-structural framework for adaptive supply chain planning and operations control with structure dynamics considerations. <i>European Journal of Operational Research</i> , 2010 , 200, 409-420	5.6	188
200	Blockchain-oriented dynamic modelling of smart contract design and execution in the supply chain. <i>International Journal of Production Research</i> , 2020 , 58, 2184-2199	7.8	187
199	Revealing interfaces of supply chain resilience and sustainability: a simulation study. <i>International Journal of Production Research</i> , 2018 , 56, 3507-3523	7.8	178
198	Coronavirus (COVID-19/SARS-CoV-2) and supply chain resilience: a research note. <i>International Journal of Integrated Supply Management</i> , 2020 , 13, 90	3.8	168
197	Low-Certainty-Need (LCN) supply chains: a new perspective in managing disruption risks and resilience. <i>International Journal of Production Research</i> , 2019 , 57, 5119-5136	7.8	156
196	Challenges for the cyber-physical manufacturing enterprises of the future. <i>Annual Reviews in Control</i> , 2019 , 47, 200-213	10.3	154

(2010-2013)

195	Control and system-theoretic identification of the supply chain dynamics domain for planning, analysis and adaptation of performance under uncertainty. <i>European Journal of Operational Research</i> , 2013 , 224, 313-323	5.6	151
194	A supervised machine learning approach to data-driven simulation of resilient supplier selection in digital manufacturing. <i>International Journal of Information Management</i> , 2019 , 49, 86-97	16.4	148
193	Simulation-based ripple effect modelling in the supply chain. <i>International Journal of Production Research</i> , 2017 , 55, 2083-2101	7.8	146
192	Reconfigurable supply chain: the X-network. International Journal of Production Research, 2020, 58, 413	8 7 48163	146
191	Scheduling in production, supply chain and Industry 4.0 systems by optimal control: fundamentals, state-of-the-art and applications. <i>International Journal of Production Research</i> , 2019 , 57, 411-432	7.8	142
190	Does the ripple effect influence the bullwhip effect? An integrated analysis of structural and operational dynamics in the supply chain his is an extended version of the conference paper: Rozhkov M., B., and D. Ivanov. 2018. Contingency Production-Inventory Control Policies for	7.8	140
189	Resilient supplier selection and optimal order allocation under disruption risks. <i>International Journal of Production Economics</i> , 2019 , 213, 124-137	9.3	130
188	OR-methods for coping with the ripple effect in supply chains during COVID-19 pandemic: Managerial insights and research implications. <i>International Journal of Production Economics</i> , 2021 , 232, 107921	9.3	130
187	Optimal distribution (re)planning in a centralized multi-stage supply network under conditions of the ripple effect and structure dynamics. <i>European Journal of Operational Research</i> , 2014 , 237, 758-770	5.6	126
186	Researchers' perspectives on Industry 4.0: multi-disciplinary analysis and opportunities for operations management. <i>International Journal of Production Research</i> , 2021 , 59, 2055-2078	7.8	123
185	Disruption-driven supply chain (re)-planning and performance impact assessment with consideration of pro-active and recovery policies. <i>Transportation Research, Part E: Logistics and Transportation Review</i> , 2016 , 90, 7-24	9	101
184	Structural quantification of the ripple effect in the supply chain. <i>International Journal of Production Research</i> , 2016 , 54, 152-169	7.8	100
183	A survey on control theory applications to operational systems, supply chain management, and Industry 4.0. <i>Annual Reviews in Control</i> , 2018 , 46, 134-147	10.3	97
182	Disruption tails and revival policies: A simulation analysis of supply chain design and production-ordering systems in the recovery and post-disruption periods. <i>Computers and Industrial Engineering</i> , 2019 , 127, 558-570	6.4	94
181	Structural Dynamics and Resilience in Supply Chain Risk Management. <i>Profiles in Operations Research</i> , 2018 ,	1	91
180	Increasing flexibility and productivity in Industry 4.0 production networks with autonomous mobile robots and smart intralogistics. <i>Annals of Operations Research</i> , 2020 , 1	3.2	90
179	Applicability of optimal control theory to adaptive supply chain planning and scheduling. <i>Annual Reviews in Control</i> , 2012 , 36, 73-84	10.3	86
178	An adaptive framework for aligning (re)planning decisions on supply chain strategy, design, tactics, and operations. <i>International Journal of Production Research</i> , 2010 , 48, 3999-4017	7.8	78

177	Supply Chain Viability and the COVID-19 pandemic: a conceptual and formal generalisation of four major adaptation strategies. <i>International Journal of Production Research</i> , 2021 , 59, 3535-3552	7.8	78
176	Ripple effect modelling of supplier disruption: integrated Markov chain and dynamic Bayesian network approach. <i>International Journal of Production Research</i> , 2020 , 58, 3284-3303	7.8	78
175	Bayesian networks for supply chain risk, resilience and ripple effect analysis: A literature review. <i>Expert Systems With Applications</i> , 2020 , 161, 113649	7.8	77
174	Adaptive Supply Chain Management 2010 ,		77
173	Ripple effect in the supply chain network: Forward and backward disruption propagation, network health and firm vulnerability. <i>European Journal of Operational Research</i> , 2021 , 291, 1117-1131	5.6	76
172	. IEEE Transactions on Engineering Management, 2018 , 65, 303-315	2.6	74
171	Dynamic recovery policies for time-critical supply chains under conditions of ripple effect. <i>International Journal of Production Research</i> , 2016 , 54, 7245-7258	7.8	64
170	Scheduling of recovery actions in the supply chain with resilience analysis considerations. <i>International Journal of Production Research</i> , 2018 , 56, 6473-6490	7.8	64
169	Costs of resilience and disruptions in supply chain network design models: A review and future research directions. <i>International Journal of Production Economics</i> , 2021 , 235, 108103	9.3	63
168	Ripple effect quantification by supplier risk exposure assessment. <i>International Journal of Production Research</i> , 2020 , 58, 5559-5578	7.8	63
167	Food retail supply chain resilience and the COVID-19 pandemic: A digital twin-based impact analysis and improvement directions <i>Transportation Research, Part E: Logistics and Transportation Review</i> , 2021 , 152, 102412	9	62
166	Optimization of network redundancy and contingency planning in sustainable and resilient supply chain resource management under conditions of structural dynamics. <i>Annals of Operations Research</i> , 2019 , 1	3.2	61
165	Ripple effect and supply chain disruption management: new trends and research directions. <i>International Journal of Production Research</i> , 2021 , 59, 102-109	7.8	61
164	Lean resilience: AURA (Active Usage of Resilience Assets) framework for post-COVID-19 supply chain management. <i>International Journal of Logistics Management</i> , 2021 , ahead-of-print,	4.5	61
163	A real-option approach to mitigate disruption risk in the supply chain. <i>Omega</i> , 2019 , 88, 133-149	7.2	60
162	Competitive pricing of substitute products under supply disruption. <i>Omega</i> , 2021 , 101, 102279	7.2	58
161	Dual problem formulation and its application to optimal redesign of an integrated production distribution network with structure dynamics and ripple effect considerations. <i>International Journal of Production Research</i> , 2013 , 51, 5386-5403	7.8	56
160	Minimization of disruption-related return flows in the supply chain. <i>International Journal of Production Economics</i> , 2017 , 183, 503-513	9.3	55

(2016-2019)

159	A new resilience measure for supply networks with the ripple effect considerations: a Bayesian network approach. <i>Annals of Operations Research</i> , 2019 , 1	3.2	55
158	Coordination of production and ordering policies under capacity disruption and product write-off risk: an analytical study with real-data based simulations of a fast moving consumer goods company. <i>Annals of Operations Research</i> , 2020 , 291, 387-407	3.2	54
157	Building resilience and managing post-disruption supply chain recovery: Lessons from the information and communication technology industry. <i>International Journal of Information Management</i> , 2019 , 49, 330-342	16.4	52
156	Simulation-based single vs. dual sourcing analysis in the supply chain with consideration of capacity disruptions, big data and demand patterns. <i>International Journal of Integrated Supply Management</i> , 2017 , 11, 24	3.8	51
155	A blessing in disguiselor as if it wasnahard enough alreadylreciprocal and aggravate vulnerabilities in the supply chain. <i>International Journal of Production Research</i> , 2020 , 58, 3252-3262	7.8	51
154	Digital Supply Chain Twins: Managing the Ripple Effect, Resilience, and Disruption Risks by Data-Driven Optimization, Simulation, and Visibility. <i>Profiles in Operations Research</i> , 2019 , 309-332	1	45
153	Integration of aggregate distribution and dynamic transportation planning in a supply chain with capacity disruptions and the ripple effect consideration. <i>International Journal of Production Research</i> , 2015 , 53, 6963-6979	7.8	45
152	Dual sourcing under supply disruption with risk-averse suppliers in the sharing economy. <i>International Journal of Production Research</i> , 2020 , 58, 291-307	7.8	41
151	Supply chain viability: conceptualization, measurement, and nomological validation. <i>Annals of Operations Research</i> , 2021 , 1-30	3.2	41
150	Integrated detection of disruption scenarios, the ripple effect dispersal and recovery paths in supply chains. <i>Annals of Operations Research</i> , 2019 , 1	3.2	40
149	Global Supply Chain and Operations Management. Springer Texts in Business and Economics, 2017,	0.3	39
148	Conceptualization and Measurement of Supply Chain Resilience in an Open-System Context. <i>IEEE Transactions on Engineering Management</i> , 2020 , 1-16	2.6	39
147	Simultaneous structural perational control of supply chain dynamics and resilience. <i>Annals of Operations Research</i> , 2019 , 283, 1191-1210	3.2	37
146	Exiting the COVID-19 pandemic: after-shock risks and avoidance of disruption tails in supply chains. <i>Annals of Operations Research</i> , 2021 , 1-18	3.2	35
145	Structure dynamics control approach to supply chain planning and adaptation. <i>International Journal of Production Research</i> , 2012 , 50, 6133-6149	7.8	34
144	The inter-disciplinary modelling of supply chains in the context of collaborative multi-structural cyber-physical networks. <i>Journal of Manufacturing Technology Management</i> , 2012 , 23, 976-997	7.1	33
143	A control approach to scheduling flexibly configurable jobs with dynamic structural-logical constraints. <i>IISE Transactions</i> , 2021 , 53, 21-38	3.3	33
142	Schedule coordination in cyber-physical supply networks Industry 4.0. <i>IFAC-PapersOnLine</i> , 2016 , 49, 839	9-844	32

141	New disruption risk management perspectives in supply chains: digital twins, the ripple effect, and resileanness. <i>IFAC-PapersOnLine</i> , 2019 , 52, 337-342	0.7	32
140	Robust dynamic schedule coordination control in the supply chain. <i>Computers and Industrial Engineering</i> , 2016 , 94, 18-31	6.4	31
139	Machine learning in manufacturing and industry 4.0 applications. <i>International Journal of Production Research</i> , 2021 , 59, 4773-4778	7.8	31
138	Integrated scheduling of material flows and information services in industry 4.0 supply networks. <i>IFAC-PapersOnLine</i> , 2015 , 48, 1533-1538	0.7	27
137	Dynamic co-ordinated scheduling in the supply chain under a process modernisation. <i>International Journal of Production Research</i> , 2013 , 51, 2680-2697	7.8	27
136	Global Supply Chain and Operations Management. Springer Texts in Business and Economics, 2019,	0.3	27
135	Stress testing supply chains and creating viable ecosystems. Operations Management Research,1	3.6	27
134	Schedule robustness analysis with the help of attainable sets in continuous flow problem under capacity disruptions. <i>International Journal of Production Research</i> , 2016 , 54, 3397-3413	7.8	26
133	Disruptions in supply chains and recovery policies: state-of-the art review. <i>IFAC-PapersOnLine</i> , 2016 , 49, 1436-1441	0.7	24
132	Introduction to Supply Chain Resilience. Classroom Companion: Business, 2021,	0.1	23
131	Supply Chain Design With Disruption Considerations: Review of Research Streams on the Ripple		22
	Effect in the Supply Chain. IFAC-PapersOnLine, 2015, 48, 1700-1707	0.7	22
130		0.7	21
130	Effect in the Supply Chain. <i>IFAC-PapersOnLine</i> , 2015 , 48, 1700-1707 Integrated supply chain planning based on a combined application of operations research and	,	
	Integrated supply Chain planning based on a combined application of operations research and optimal control. <i>Central European Journal of Operations Research</i> , 2011 , 19, 299-317 A multi-layer Bayesian network method for supply chain disruption modelling in the wake of the	2.2	21
129	Integrated supply chain planning based on a combined application of operations research and optimal control. <i>Central European Journal of Operations Research</i> , 2011 , 19, 299-317 A multi-layer Bayesian network method for supply chain disruption modelling in the wake of the COVID-19 pandemic. <i>International Journal of Production Research</i> ,1-19 Closed-loop supply chain simulation with disruption considerations: a case-study on Tesla.	7.8	21
129	Integrated supply chain planning based on a combined application of operations research and optimal control. <i>Central European Journal of Operations Research</i> , 2011 , 19, 299-317 A multi-layer Bayesian network method for supply chain disruption modelling in the wake of the COVID-19 pandemic. <i>International Journal of Production Research</i> ,1-19 Closed-loop supply chain simulation with disruption considerations: a case-study on Tesla. <i>International Journal of Inventory Research</i> , 2017 , 4, 257 Multi-stage supply chain scheduling with non-preemptive continuous operations and execution	2.2 7.8 0.4	21 21 20
129 128 127	Integrated supply chain planning based on a combined application of operations research and optimal control. <i>Central European Journal of Operations Research</i> , 2011 , 19, 299-317 A multi-layer Bayesian network method for supply chain disruption modelling in the wake of the COVID-19 pandemic. <i>International Journal of Production Research</i> ,1-19 Closed-loop supply chain simulation with disruption considerations: a case-study on Tesla. <i>International Journal of Inventory Research</i> , 2017 , 4, 257 Multi-stage supply chain scheduling with non-preemptive continuous operations and execution control. <i>International Journal of Production Research</i> , 2014 , 52, 4059-4077 Visualisation of ripple effect in supply chains under long-term, simultaneous disruptions: a system	2.2 7.8 0.4 7.8	21 21 20 20

(2005-2021)

123	Digital Supply Chain Management and Technology to Enhance Resilience by Building and Using End-to-End Visibility During the COVID-19 Pandemic. <i>IEEE Transactions on Engineering Management</i> , 2021 , 1-11	2.6	18
122	Optimal Control Algorithms and Their Analysis for Short-Term Scheduling in Manufacturing Systems. <i>Algorithms</i> , 2018 , 11, 57	1.8	17
121	Supply chain resilience and its interplay with digital technologies: making innovations work in emergency situations. <i>International Journal of Physical Distribution and Logistics Management</i> , 2021 , 51, 97-103	5.2	17
120	An entropy-based approach to simultaneous analysis of supply chain structural complexity and adaptation potential. <i>International Journal of Shipping and Transport Logistics</i> , 2011 , 3, 180	1	16
119	Integrated modelling of agile enterprise networks. <i>International Journal of Agile Systems and Management</i> , 2007 , 2, 23	1.7	16
118	Integrated dynamic scheduling of material flows and distributed information services in collaborative cyber-physical supply networks1 The paper is an extended version of the conference paper Ivanov D., Sokolov B. (2012c), Btructure dynamics control-based service scheduling in	2.6	14
117	Digital Supply Chain, Smart Operations and Industry 4.0. <i>Springer Texts in Business and Economics</i> , 2019 , 481-526	0.3	13
116	CONTROL THEORY APPLICATIONS TO OPERATIONS SYSTEMS, SUPPLY CHAIN MANAGEMENT AND INDUSTRY 4.0 NETWORKS. <i>IFAC-PapersOnLine</i> , 2018 , 51, 1536-1541	0.7	13
115	Blockchain-supported business model design, supply chain resilience, and firm performance. <i>Transportation Research, Part E: Logistics and Transportation Review</i> , 2022 , 163, 102773	9	13
114	Ripple Effect in the Supply Chain: Definitions, Frameworks and Future Research Perspectives. <i>Profiles in Operations Research</i> , 2019 , 1-33	1	12
113	Managing Disruptions and the Ripple Effect in Digital Supply Chains: Empirical Case Studies. <i>Profiles in Operations Research</i> , 2019 , 261-285	1	12
112	A robust-heuristic optimization approach to a green supply chain design with consideration of assorted vehicle types and carbon policies under uncertainty. <i>Annals of Operations Research</i> ,1	3.2	12
111	Competitive energy consumption under transmission constraints in a multi-supplier power grid system. <i>International Journal of Systems Science</i> , 2017 , 48, 994-1001	2.3	11
110	Design redundancy in agile and resilient humanitarian supply chains. <i>Annals of Operations Research</i> , 2019 , 1	3.2	11
109	Analysis of the COVID-19 pandemic impacts on manufacturing: a systematic literature review and future research agenda. <i>Operations Management Research</i> ,	3.6	11
108	Exact and heuristic methods for integrated supply chain design reliability analysis. <i>International Journal of Integrated Supply Management</i> , 2016 , 10, 206	3.8	9
107	Multi-disciplinary analysis of interfaces "Supply Chain Event Management - RFID - control theory". <i>International Journal of Integrated Supply Management</i> , 2013 , 8, 52	3.8	9
106	Quantitative Models of Collaborative Networks. <i>International Federation for Information Processing</i> , 2005 , 387-394		9

105	A Dynamic Approach to Multi-stage Job Shop Scheduling in an Industry 4.0-Based Flexible Assembly System. <i>IFIP Advances in Information and Communication Technology</i> , 2017 , 475-482	0.5	8
104	Situational Modelling for Structural Dynamics Control of Industry-Business Processes and Supply Chains. <i>Studies in Computational Intelligence</i> , 2010 , 279-308	0.8	8
103	Equilibrium Traffic Flow Assignment in Case of Two Navigation Providers. <i>IFIP Advances in Information and Communication Technology</i> , 2013 , 156-163	0.5	7
102	Integrated analysis of supply chain structure design and adaptation potential in an agile environment. <i>International Journal of Integrated Supply Management</i> , 2011 , 6, 165	3.8	7
101	Integrated customer-oriented product design and process networking of supply chains in virtual environments. <i>International Journal of Networking and Virtual Organisations</i> , 2012 , 11, 48	0.4	7
100	New Drivers for Supply Chain Structural Dynamics and Resilience: Sustainability, Industry 4.0, Self-Adaptation. <i>Profiles in Operations Research</i> , 2018 , 293-313	1	7
99	CONTINGENCY PRODUCTION-INVENTORY CONTROL POLICY FOR CAPACITY DISRUPTIONS IN THE RETAIL SUPPLY CHAIN WITH PERISHABLE PRODUCTS. <i>IFAC-PapersOnLine</i> , 2018 , 51, 1448-1452	0.7	7
98	Ripple Effect in the Time-Critical Food Supply Chains and Recovery Policies. <i>IFAC-PapersOnLine</i> , 2015 , 48, 1682-1687	0.7	6
97	A utility adjusted newsvendor model with stochastic demand. <i>International Journal of Production Economics</i> , 2019 , 211, 154-165	9.3	5
96	Optimal overbooking strategies in the airlines using dynamic programming approach in continuous time. <i>Transportation Research, Part E: Logistics and Transportation Review,</i> 2019 , 128, 384-399	9	5
95	Supply chain multi-structural (re)-design. <i>International Journal of Integrated Supply Management</i> , 2009 , 5, 19	3.8	5
94	OR and analytics for digital, resilient, and sustainable manufacturing 4.0. <i>Annals of Operations Research</i> , 2022 , 310, 1	3.2	5
93	Basics of Supply Chain and Operations Management. Springer Texts in Business and Economics, 2019, 3-1	6 0.3	5
92	Introduction to Scheduling in Industry 4.0 and Cloud Manufacturing Systems. <i>Profiles in Operations Research</i> , 2020 , 1-9	1	5
91	Supply Chain Management and Structural Dynamics Control. <i>Profiles in Operations Research</i> , 2018 , 1-18	1	5
90	Supply Chain Risk Management: Bullwhip Effect and Ripple Effect. <i>Profiles in Operations Research</i> , 2018 , 19-44	1	5
89	Stability Analysis in the Framework of Decision Making Under Risk and Uncertainty 2006, 211-218		5
88	The Digital Supply Chain mergence, concepts, definitions, and technologies 2022, 3-24		5

(2017-2017)

87	Optimal control representation of the mathematical programming model for supply chain dynamic reconfiguration. <i>IFAC-PapersOnLine</i> , 2017 , 50, 4994-4999	0.7	4
86	Case studies of the digital technology impacts on supply chain disruption risk management 2019 , 23-52		4
85	APPLICATION OF CONTROL THEORETIC TOOLS TO SUPPLY CHAIN DISRUPTION MANAGEMENT. IFAC Postprint Volumes IPPV / International Federation of Automatic Control, 2013, 46, 1926-1931		4
84	Proactive Scheduling and Reactive Real-Time Control in Industry 4.0. <i>Profiles in Operations Research</i> , 2020 , 11-37	1	4
83	Simulation Vs. Optimization Approaches to Ripple Effect Modelling in the Supply Chain. <i>Lecture Notes in Logistics</i> , 2018 , 34-39	0.5	4
82	Adaptation-Based Supply Chain Resilience. Lecture Notes in Logistics, 2013, 267-287	0.5	4
81	Combined approach to the complex objects control and stability analysis of management decisions. <i>International Journal of Risk Assessment and Management</i> , 2020 , 23, 106	0.9	4
80	Intellectualization of control: cyber-physical supply chain risk analytics. <i>IFAC-PapersOnLine</i> , 2019 , 52, 355-360	0.7	4
79	A mathematical model for managing the multi-dimensional impacts of the COVID-19 pandemic in supply chain of a high-demand item <i>Annals of Operations Research</i> , 2022 , 1-46	3.2	4
78	Coordination of the supply chain schedules with re-scheduling considerations. <i>IFAC-PapersOnLine</i> , 2015 , 48, 1509-1514	0.7	3
77	Capacity planning on key work stations in a hybrid MTO-ETO production system: a case-study on Siemens AG. <i>International Journal of Inventory Research</i> , 2017 , 4, 214	0.4	3
76	Analysis of the order recovery point location in the supply chain. <i>International Journal of Integrated Supply Management</i> , 2015 , 9, 329	3.8	3
75	Expected trends in production networks for mass personalization in the cloud technology era 2022 , 13-	·37	3
74	Disruption tails and post-disruption instability mitigation in the supply chain. <i>IFAC-PapersOnLine</i> , 2019 , 52, 343-348	0.7	3
73	Supply Chain Resilience: Modelling, Management, and Control. <i>Profiles in Operations Research</i> , 2018 , 45-89	1	3
72	OR/MS Methods for Structural Dynamics in Supply Chain Risk Management. <i>Profiles in Operations Research</i> , 2018 , 115-159	1	3
71	The cloud, platforms, and digital twinsEnablers of the digital supply chain 2022, 77-91		3
70	Natural Disasters and Supply Chain Disruption Management 2017 , 245-271		2

69	Manufacturing modelling, management and control: IFAC TC 5.2 past, present and future. <i>Annual Reviews in Control</i> , 2020 , 49, 258-263	10.3	2
68	Integrated Planning and Scheduling with Dynamic Analysis and Control of Service Level and Costs. <i>Operations Research/ Computer Science Interfaces Series</i> , 2016 , 263-283	0.3	2
67	Operations and Supply Chain Strategy. Springer Texts in Business and Economics, 2017, 69-96	0.3	2
66	Scheduling in Production, Supply Chain and Industry 4.0 Systems by Optimal Control: Fundamentals, State-of-the-Art, and Applications. <i>SSRN Electronic Journal</i> ,	1	2
65	Operations and Supply Chain Strategy. Springer Texts in Business and Economics, 2019, 81-110	0.3	2
64	Structure Dynamics Control-Based Service Scheduling in Collaborative Cyber-Physical Supply Networks. <i>International Federation for Information Processing</i> , 2012 , 280-288		2
63	Integrated Adaptive Design and Planning of Supply Networks. <i>Lecture Notes in Business Information Processing</i> , 2010 , 152-163	0.6	2
62	Managing Supply Chain Resilience. <i>Classroom Companion: Business</i> , 2021 , 29-61	0.1	2
61	Flexible flow shop scheduling for continuous production. <i>International Journal of Service and Computing Oriented Manufacturing</i> , 2016 , 2, 189	0	1
60	Multiple-Model Description and Control Construction Algorithm of Supply Chain. <i>Advances in Intelligent Systems and Computing</i> , 2019 , 102-108	0.4	1
59	Examples from Different Industries, Services and Continents. <i>Springer Texts in Business and Economics</i> , 2017 , 15-36	0.3	1
58	Processes, Systems, and Models. Springer Texts in Business and Economics, 2017, 37-67	0.3	1
57	Production Strategy. Springer Texts in Business and Economics, 2017, 121-140	0.3	1
56	ON APPLICABILITY OF OPTIMAL CONTROL THEORY TO ADAPTIVE SUPPLY CHAIN PLANNING AND SCHEDULING. <i>IFAC Postprint Volumes IPPV / International Federation of Automatic Control</i> , 2011 , 44, 42	3-434	1
55	RFID-based Adaptive Feedbacks between Supply Chain Scheduling and Execution Control. <i>IFAC Postprint Volumes IPPV / International Federation of Automatic Control</i> , 2011 , 44, 435-440		1
54	Sourcing Strategy. Springer Texts in Business and Economics, 2021, 125-147	0.3	1
53	Assessment of Collaborative Networks Structural Stability 2007 , 75-82		1
52	Demand Forecasting. Springer Texts in Business and Economics, 2019, 319-333	0.3	1

51	Facility Location Planning and Network Design. Springer Texts in Business and Economics, 2019, 155-202	0.3	1
50	Cost analysis of capacity flexibility in a hybrid multiple-line production system at Siemens AG. <i>IFAC-PapersOnLine</i> , 2016 , 49, 1278-1282	0.7	1
49	A multi-layer congested facility location problem with consideration of impatient customers in a queuing system. <i>IFAC-PapersOnLine</i> , 2019 , 52, 2279-2284	0.7	1
48	Managing the risk of supply chain bankruptcy in supply chain network redesign. <i>IFAC-PapersOnLine</i> , 2019 , 52, 2431-2436	0.7	1
47	Supply Chain Risk Management and Resilience. Springer Texts in Business and Economics, 2019, 455-479	0.3	1
46	Optimal divestment time in supply chain redesign under oligopoly: evidence from shale oil production plants. <i>International Transactions in Operational Research</i> , 2020 , 27, 2559-2583	2.9	1
45	Supply Chain Risks, Disruptions, and Ripple Effect. Classroom Companion: Business, 2021, 1-28	0.1	1
44	Disruption Tails and Revival Policies in the Supply Chain. <i>Profiles in Operations Research</i> , 2019 , 229-260	1	Ο
43	Basics of Supply Chain and Operations Management. Springer Texts in Business and Economics, 2017, 1-1	40.3	0
42	Distribution and Transportation Network Design. Springer Texts in Business and Economics, 2017, 189-23	2 0.3	O
41	Basics of Supply Chain and Operations Management. Springer Texts in Business and Economics, 2021, 3-1	90.3	О
40	Inventory Management. Springer Texts in Business and Economics, 2019, 361-406	0.3	O
39	Simulation Applications to Structural Dynamics in Service and Manufacturing Supply Chain Risk Management. <i>Profiles in Operations Research</i> , 2018 , 243-274	1	О
38	Optimal Core Acquisition and Remanufacturing Decisions With Discrete Core Quality Grades. <i>IEEE Transactions on Engineering Management</i> , 2021 , 1-20	2.6	O
37	Entropy-Based Analysis and Quantification of Supply Chain Recoverability. <i>Profiles in Operations Research</i> , 2019 , 193-208	1	
36	Performance Impact Analysis of Disruption Propagations in the Supply Chain. <i>Profiles in Operations Research</i> , 2019 , 163-180	1	
35	A Model of an Integrated Analytics Decision Support System for Situational Proactive Control of Recovery Processes in Service-Modularized Supply Chain. <i>Profiles in Operations Research</i> , 2019 , 129-144	1	
34	Routing and Scheduling. Springer Texts in Business and Economics, 2017, 389-434	0.3	

33	Sourcing Strategy. Springer Texts in Business and Economics, 2017, 97-119	0.3
32	Facility Location Planning and Network Design. Springer Texts in Business and Economics, 2017, 141-187	0.3
31	DEVELOPING AN ADAPTIVE FRAMEWORK FOR SUSTAINABLE SUPPLY NETWORKS 2012 , 109-131	
30	Task re-allocation in temporary production networks. <i>International Journal of Integrated Supply Management</i> , 2013 , 8, 107	3.8
29	STRUCTURE DYNAMICS CONTROL-BASED INTEGRATION OF AGGREGATE DISTRIBUTION AND DYNAMIC TRANSPORTATION PLANNING. <i>IFAC Postprint Volumes IPPV / International Federation of Automatic Control</i> , 2013 , 46, 1920-1925	
28	ATTAINABLE SETS AND THEIR POSSIBLE APPLICATIONS TO SUPPLY CHAIN ANALYSIS. <i>IFAC</i> Postprint Volumes IPPV / International Federation of Automatic Control, 2012 , 45, 578-583	
27	ISSUES IN SUPPLY CHAIN STABILITY ESTIMATION IN FLEXIBLE SUPPLY NETWORKS AND POSSIBLE METHODS AND TOOLS FOR THEIR DECISION. <i>IFAC Postprint Volumes IPPV / International Federation of Automatic Control</i> , 2009 , 42, 570-575	
26	MANAGEMENT CONCEPT AND TOOLS OF COMPETENCE-CELL BASED MODULARIZED AGILE SUPPLY CHAINS. <i>IFAC Postprint Volumes IPPV / International Federation of Automatic Control</i> , 2009 , 42, 864-869	
25	Integrated Scheduling of Information Services and Logistics Flows in the Omnichannel System. <i>Profiles in Operations Research</i> , 2020 , 125-140	1
24	Inventory Management. Springer Texts in Business and Economics, 2021, 385-433	0.3
23	Examples from Different Industries, Services, and Continents. <i>Springer Texts in Business and Economics</i> , 2021 , 21-48	0.3
22	Supply Chain Risk Management and Resilience. Springer Texts in Business and Economics, 2021, 485-520	0.3
21	Digital Supply Chain, Smart Operations and Industry 4.0. <i>Springer Texts in Business and Economics</i> , 2021 , 521-581	0.3
20	Facility Location Planning and Network Design. Springer Texts in Business and Economics, 2021, 171-222	0.3
19	Routing and Scheduling. Springer Texts in Business and Economics, 2021, 435-482	0.3
18	Distribution and Transportation Network Design. Springer Texts in Business and Economics, 2021, 223-26	5 5 0.3
17	Production Strategy. Springer Texts in Business and Economics, 2021, 149-169	0.3
16	Operations and Supply Chain Strategy. Springer Texts in Business and Economics, 2021 , 87-124	0.3

LIST OF PUBLICATIONS

15	Factory Planning and Process Design. Springer Texts in Business and Economics, 2021, 267-313	0.3
14	Processes, Systems, and Models. Springer Texts in Business and Economics, 2021, 49-83	0.3
13	Processes, Systems, and Models. Springer Texts in Business and Economics, 2019, 45-78	0.3
12	Production Strategy. Springer Texts in Business and Economics, 2019, 135-154	0.3
11	Distribution and Transportation Network Design. Springer Texts in Business and Economics, 2019, 203-2	450.3
10	Routing and Scheduling. Springer Texts in Business and Economics, 2019, 407-452	0.3
9	Sourcing Strategy. Springer Texts in Business and Economics, 2019, 111-134	0.3
8	Control Theory Application to Complex Technical Objects Scheduling Problem Solving. <i>Advances in Intelligent Systems and Computing</i> , 2017 , 172-179	0.4
7	Modeling Supply Chain Resilience. Classroom Companion: Business, 2021, 63-92	0.1
6	Measuring Supply Chain Resilience. <i>Classroom Companion: Business</i> , 2021 , 93-126	0.1
5	Principles and Methods of Model-Based Decision-Making in the Supply Chain. <i>Profiles in Operations Research</i> , 2018 , 91-114	1
4	Hybrid Multi-objective Mathematical Optimization: Optimal Control Model for Proactive Supply Chain Recovery Planning. <i>Profiles in Operations Research</i> , 2018 , 161-201	1
3	Control-Theoretic Models and Algorithms for Supply Chain Scheduling with Capacity Disruption and Recovery Considerations. <i>Profiles in Operations Research</i> , 2018 , 203-241	1
2	Entropy-Based Supply Chain Structural Complexity Analysis. <i>Profiles in Operations Research</i> , 2018 , 275-	292
1	Supply Chain Viability. Classroom Companion: Business, 2021, 127-145	0.1