Shu-hua Yi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9542544/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Quantification of Alpine Grassland Fractional Vegetation Cover Retrieval Uncertainty Based on Multiscale Remote Sensing Data. IEEE Geoscience and Remote Sensing Letters, 2022, 19, 1-5.	1.4	1
2	A non-destructive method for rapid acquisition of grassland aboveground biomass for satellite ground verification using UAV RGB images. Global Ecology and Conservation, 2022, 33, e01999.	1.0	11
3	Mapping Grassland Classes Using Unmanned Aerial Vehicle and MODIS NDVI Data for Temperate Grassland in Inner Mongolia, China. Remote Sensing, 2022, 14, 2094.	1.8	9
4	Effects of plateau pikas' foraging and burrowing activities on vegetation biomass and soil organic carbon of alpine grasslands. Plant and Soil, 2021, 458, 201-216.	1.8	21
5	Using UAVs to assess the relationship between alpine meadow bare patches and disturbance by pikas in the source region of Yellow River on the Qinghai-Tibetan Plateau. Global Ecology and Conservation, 2021, 26, e01517.	1.0	13
6	Applications of UAVs in Cold Region Ecological and Environmental Studies. Remote Sensing, 2021, 13, 2472.	1.8	0
7	Mapping of Kobresia pygmaea Community Based on Umanned Aerial Vehicle Technology and Gaofen Remote Sensing Data in Alpine Meadow Grassland: A Case Study in Eastern of Qinghai–Tibetan Plateau. Remote Sensing, 2021, 13, 2483.	1.8	16
8	Characteristics and controls of vegetation and diversity changes monitored with an unmanned aerial vehicle (UAV) in the foreland of the Urumqi Glacier No. 1, Tianshan, China. Science of the Total Environment, 2021, 771, 145433.	3.9	15
9	Characteristics and controlling factors of alpine grassland vegetation patch patterns on the central Qinghai-Tibetan plateau. Ecological Indicators, 2021, 125, 107570.	2.6	8
10	The Similarity between Species Composition of Vegetation and Soil Seed Bank of Grasslands in Inner Mongolia, China: Implications for the Asymmetric Response to Precipitation. Plants, 2021, 10, 1890.	1.6	4
11	Improving the estimation of alpine grassland fractional vegetation cover using optimized algorithms and multi-dimensional features. Plant Methods, 2021, 17, 96.	1.9	15
12	Pikas burrowing activity promotes vegetation species diversity in alpine grasslands on the Qinghai-Tibetan Plateau. Global Ecology and Conservation, 2021, 31, e01806.	1.0	3
13	Ecological carrying capacity of alpine grassland in the Qinghai–Tibet Plateau based on the structural dynamics method. Environment, Development and Sustainability, 2021, 23, 12550-12578.	2.7	20
14	Responses of Boreal Forest Ecosystems and Permafrost to Climate Change and Disturbances: A Modeling Perspective. , 2021, , 849-892.		0
15	Predicting the Distribution of Oxytropis ochrocephala Bunge in the Source Region of the Yellow River (China) Based on UAV Sampling Data and Species Distribution Model. Remote Sensing, 2021, 13, 5129.	1.8	6
16	Effects of topography and land-use patterns on the spatial heterogeneity of terracette landscapes in the Loess Plateau, China. Ecological Indicators, 2020, 109, 105839.	2.6	10
17	Summer Mass Balance and Surface Velocity Derived by Unmanned Aerial Vehicle on Debris-Covered Region of Baishui River Glacier No. 1, Yulong Snow Mountain. Remote Sensing, 2020, 12, 3280.	1.8	21
18	Modeling Alpine Grassland Above Ground Biomass Based on Remote Sensing Data and Machine Learning Algorithm: A Case Study in East of the Tibetan Plateau, China. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2020, 13, 2986-2995.	2.3	29

Ѕни-ниа Үі

#	Article	IF	CITATIONS
19	Effects of Patchiness on Surface Soil Moisture of Alpine Meadow on the Northeastern Qinghai-Tibetan Plateau: Implications for Grassland Restoration. Remote Sensing, 2020, 12, 4121.	1.8	11
20	Quantifying the Dynamics of Livestock Distribution by Unmanned Aerial Vehicles (UAVs): A Case Study of Yak Grazing at the Household Scale. Rangeland Ecology and Management, 2020, 73, 642-648.	1.1	14
21	Modeling the carbon dynamics of alpine grassland in the Qinghai-Tibetan Plateau under scenarios of 1.5 and 2°C global warming. Advances in Climate Change Research, 2019, 10, 80-91.	2.1	16
22	Effect of plateau pika disturbance and patchiness on ecosystem carbon emissions in alpine meadow in the northeastern part of Qinghai–Tibetan Plateau. Biogeosciences, 2019, 16, 1097-1109.	1.3	22
23	Role of permafrost in resilience of social-ecological system and its spatio-temporal dynamics in the source regions of Yangtze and Yellow Rivers. Journal of Mountain Science, 2019, 16, 179-194.	0.8	5
24	Evaluation of the Accuracy of the Field Quadrat Survey of Alpine Grassland Fractional Vegetation Cover Based on the Satellite Remote Sensing Pixel Scale. ISPRS International Journal of Geo-Information, 2019, 8, 497.	1.4	11
25	Effects of small-scale patchiness of alpine grassland on ecosystem carbon and nitrogen accumulation and estimation in northeastern Qinghai-Tibetan Plateau. Geoderma, 2018, 318, 52-63.	2.3	33
26	The impacts of climate change and human activities on alpine vegetation and permafrost in the Qinghai-Tibet Engineering Corridor. Ecological Indicators, 2018, 93, 24-35.	2.6	99
27	PIC v1.3: comprehensive R package for computing permafrost indices with daily weather observations and atmospheric forcing over the Qinghai–Tibet Plateau. Geoscientific Model Development, 2018, 11, 2475-2491.	1.3	7
28	The physical properties of coarse-fragment soils and their effects on permafrost dynamics: a case study on the central Qinghai–Tibetan Plateau. Cryosphere, 2018, 12, 3067-3083.	1.5	18
29	Estimation of Grassland Canopy Height and Aboveground Biomass at the Quadrat Scale Using Unmanned Aerial Vehicle. Remote Sensing, 2018, 10, 851.	1.8	76
30	Diverse Responses of Vegetation Phenology to Climate Change in Different Grasslands in Inner Mongolia during 2000–2016. Remote Sensing, 2018, 10, 17.	1.8	65
31	Unmanned aerial vehicle methods makes species composition monitoring easier in grasslands. Ecological Indicators, 2018, 95, 825-830.	2.6	36
32	The contribution of plateau pika disturbance and erosion on patchy alpine grassland soil on the Qinghai-Tibetan Plateau: Implications for grassland restoration. Geoderma, 2017, 297, 1-9.	2.3	79
33	FragMAP: a tool for long-term and cooperative monitoring and analysis of small-scale habitat fragmentation using an unmanned aerial vehicle. International Journal of Remote Sensing, 2017, 38, 2686-2697.	1.3	48
34	Reply to Li's comments on "Plateau pikas burrowing activity accelerates ecosystem carbon emission from alpine grassland on the Qinghai-Tibetan Plateau― Ecological Engineering, 2017, 108, 330.	1.6	0
35	Vegetation Changes in the Permafrost Regions of the Qinghai-Tibetan Plateau from 1982-2012: Different Responses Related to Geographical Locations and Vegetation Types in High-Altitude Areas. PLoS ONE, 2017, 12, e0169732.	1.1	6
36	The burying and grazing effects of plateau pika on alpine grassland are small: a pilot study in a semiarid basin on the Qinghai-Tibet Plateau. Biogeosciences, 2016, 13, 6273-6284.	1.3	38

Shu-ниа Yi

#	Article	IF	CITATIONS
37	Improving estimates of fractional vegetation cover based on UAV in alpine grassland on the Qinghai–Tibetan Plateau. International Journal of Remote Sensing, 2016, 37, 1922-1936.	1.3	82
38	The role of permafrost and soil water in distribution of alpine grassland and its NDVI dynamics on the Qinghai-Tibetan Plateau. Global and Planetary Change, 2016, 147, 40-53.	1.6	72
39	Validation of the Accuracy of Different Precipitation Datasets over Tianshan Mountainous Area. Advances in Meteorology, 2015, 2015, 1-10.	0.6	12
40	Plateau pikas burrowing activity accelerates ecosystem carbon emission from alpine grassland on the Qinghai-Tibetan Plateau. Ecological Engineering, 2015, 84, 287-291.	1.6	41
41	Responses of ecosystem respiration to short-term experimental warming in the alpine meadow ecosystem of a permafrost site on the Qinghai–Tibetan Plateau. Cold Regions Science and Technology, 2015, 115, 77-84.	1.6	25
42	Responses of Alpine Grassland to Climate Warming and Permafrost Thawing in Two Basins with Different Precipitation Regimes on the Qinghai-Tibetan Plateaus. Arctic, Antarctic, and Alpine Research, 2015, 47, 125-131.	0.4	35
43	Effects of gravel on soil and vegetation properties of alpine grassland on the Qinghai-Tibetan plateau. Ecological Engineering, 2015, 74, 351-355.	1.6	54
44	Freeze/thaw processes in complex permafrost landscapes of northern Siberia simulated using the TEM ecosystem model: impact of thermokarst ponds and lakes. Geoscientific Model Development, 2014, 7, 1671-1689.	1.3	39
45	Responses of alpine grassland on Qinghai–Tibetan plateau to climate warming and permafrost degradation: a modeling perspective. Environmental Research Letters, 2014, 9, 074014.	2.2	68
46	Understanding the impact of mountain landscapes on water balance in the upper Heihe River watershed in northwestern China. Journal of Arid Land, 2013, 5, 366-383.	0.9	24
47	Coupling a glacier melt model to the Variable Infiltration Capacity (VIC) model for hydrological modeling in north-western China. Environmental Earth Sciences, 2013, 68, 87-101.	1.3	74
48	Diurnal Characteristics of Ecosystem Respiration of Alpine Meadow on the Qinghai-Tibetan Plateau: Implications for Carbon Budget Estimation. Scientific World Journal, The, 2013, 2013, 1-5.	0.8	7
49	Effects of environmental factors on the distribution of plant communities in a semiâ€arid region of the Qinghaiâ€Tibet Plateau. Ecological Research, 2012, 27, 667-675.	0.7	22
50	Effects of permafrost degradation on alpine grassland in a semi-arid basin on the Qinghai–Tibetan Plateau. Environmental Research Letters, 2011, 6, 045403.	2.2	87
51	Study on estimation model of vegetation cover in the upstream regions of Shule River Basin based on hyperspectral. , 2011, , .		0
52	Increasing contamination might have delayed spring phenology on the Tibetan Plateau. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, E94; author reply E95.	3.3	38
53	A dynamic organic soil biogeochemical model for simulating the effects of wildfire on soil environmental conditions and carbon dynamics of black spruce forests. Journal of Geophysical Research, 2010, 115, .	3.3	56
54	Interactions between soil thermal and hydrological dynamics in the response of Alaska ecosystems to fire disturbance. Journal of Geophysical Research, 2009, 114, .	3.3	72

Shu-ниа Yi

#	Article	IF	CITATIONS
55	Characteristics of organic soil in black spruce forests: Implications for the application of land surface and ecosystem models in cold regions. Geophysical Research Letters, 2009, 36, .	1.5	46
56	Impacts of peat and vegetation on permafrost degradation under climate warming. Geophysical Research Letters, 2007, 34, .	1.5	94
57	Modifications of a land surface scheme for improved simulation of ground freeze-thaw in northern environments. Geophysical Research Letters, 2006, 33, .	1.5	49
58	An Improved Method for Monitoring Multiscale Plant Species Diversity of Alpine Grassland Using UAV: A Case Study in the Source Region of the Yellow River, China. Frontiers in Plant Science, 0, 13, .	1.7	2