Zonggang Chen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9541865/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Hyaluronic acid oligosaccharide-collagen mineralized product and aligned nanofibers with enhanced vascularization properties in bone tissue engineering. International Journal of Biological Macromolecules, 2022, 206, 277-287.	7.5	19
2	Fabrication and assessment of chondroitin sulfate-modified collagen nanofibers for small-diameter vascular tissue engineering applications. Carbohydrate Polymers, 2021, 257, 117573.	10.2	13
3	Hyaluronic acid oligosaccharides modified mineralized collagen and chitosan with enhanced osteoinductive properties for bone tissue engineering. Carbohydrate Polymers, 2021, 260, 117780.	10.2	31
4	Exploring the broad nucleotide triphosphate and sugar-1-phosphate specificity of thymidylyltransferase Cps23FL from <i>Streptococcus pneumonia</i> serotype 23F. RSC Advances, 2020, 10, 30110-30114.	3.6	3
5	Design and comprehensive assessment of a biomimetic tri-layer tubular scaffold via biodegradable polymers for vascular tissue engineering applications. Materials Science and Engineering C, 2020, 110, 110717.	7.3	44
6	Hyaluronic acid oligosaccharide-modified collagen nanofibers as vascular tissue-engineered scaffold for promoting endothelial cell proliferation. Carbohydrate Polymers, 2019, 223, 115106.	10.2	48
7	Improving in vitro biocompatibility on biomimetic mineralized collagen bone materials modified with hyaluronic acid oligosaccharide. Materials Science and Engineering C, 2019, 104, 110008.	7.3	26
8	Biochemical studies of a β-1,4-rhamnoslytransferase from <i>Streptococcus pneumonia</i> serotype 23F. Organic and Biomolecular Chemistry, 2019, 17, 1071-1075.	2.8	4
9	Fabrication and Comprehensive Characterization of Biomimetic Extracellular Matrix Electrospun Scaffold for Vascular Tissue Engineering Applications. Journal of Materials Science, 2019, 54, 10871-10883.	3.7	43
10	Mechanical enhancement and <i>in vitro</i> biocompatibility of nanofibrous collagen-chitosan scaffolds for tissue engineering. Journal of Biomaterials Science, Polymer Edition, 2017, 28, 2255-2270.	3.5	16
11	Recent advances in the research of bacterial glucuronosyltransferases. Journal of Carbohydrate Chemistry, 2016, 35, 201-223.	1.1	3
12	One-pot four-enzyme synthesis of thymidinediphosphate-l-rhamnose. Chemical Communications, 2016, 52, 13995-13998.	4.1	16
13	Recent progress in injectable bone repair materials research. Frontiers of Materials Science, 2015, 9, 332-345.	2.2	20
14	Degradability of injectable calcium sulfate/mineralized collagen-based bone repair material and its effect on bone tissue regeneration. Materials Science and Engineering C, 2014, 45, 94-102.	7.3	26
15	Improved workability of injectable calcium sulfate bone cement by regulation of self-setting properties. Materials Science and Engineering C, 2013, 33, 1048-1053.	7.3	49
16	Mechanical properties and in vitro bioactivity of injectable and self-setting calcium sulfate/nano-HA/collagen bone graft substitute. Journal of the Mechanical Behavior of Biomedical Materials, 2012, 12, 119-128.	3.1	29
17	Injectable calcium sulfate/mineralized collagenâ€based bone repair materials with regulable selfâ€setting properties. Journal of Biomedical Materials Research - Part A, 2011, 99A, 554-563.	4.0	31
18	Mechanical properties of electrospun collagen–chitosan complex single fibers and membrane. Materials Science and Engineering C, 2009, 29, 2428-2435.	7.3	62

#	Article	IF	CITATIONS
19	Intermolecular interactions in electrospun collagen–chitosan complex nanofibers. Carbohydrate Polymers, 2008, 72, 410-418.	10.2	237
20	Electrospinning of collagen–chitosan complex. Materials Letters, 2007, 61, 3490-3494.	2.6	196
21	Sequential Oneâ€Pot Threeâ€Enzyme Synthesis of the Tetrasaccharide Repeating Unit of Group B Streptococcus Serotype VIII Capsular Polysaccharide. Chinese Journal of Chemistry, 0, , .	4.9	3