Roman Wenne

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/954174/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Combined threats to native smooth-shelled mussels (genus <i>Mytilus</i>) in Australia: bioinvasions and hybridization. Zoological Journal of the Linnean Society, 2022, 194, 1194-1211.	1.0	9
2	Provenance of Mytilus food products in Europe using SNP genetic markers. Aquaculture, 2022, 554, 738135.	1.7	5
3	Molecular genetic differentiation of native populations of Mediterranean blue mussels, <i>Mytilus galloprovincialis</i> Lamarck, 1819, and the relationship with environmental variables. , 2022, 89, 755-784.		7
4	A comment on Giusti et al. (2020) "Mussels (Mytilus spp.) products authentication: A case study on the Italian market confirms issues in species identification and arises concern on commercial names attribution, Food Control Volume 118, December 2020, 107, 379― Food Control, 2021, 121, 107626.	2.8	2
5	The re-appearance of the Mytilus spp. complex in Svalbard, Arctic, during the Holocene: The case for an arrival by anthropogenic flotsam. Global and Planetary Change, 2021, 202, 103502.	1.6	19
6	Ecology and genetics of Mytilus galloprovincialis: A threat to bivalve aquaculture in southern Brazil. Aquaculture, 2021, 540, 736753.	1.7	14
7	Phylogeography of Southern Hemisphere Blue Mussels of the Genus Mytilus: Evolution, Biosecurity, Aquaculture and Food Labelling. , 2021, , 139-228.		1
8	A Marine Biodiversity Observation Network for Genetic Monitoring of Hard-Bottom Communities (ARMS-MBON). Frontiers in Marine Science, 2020, 7, .	1.2	34
9	Trans-Atlantic Distribution and Introgression as Inferred from Single Nucleotide Polymorphism: Mussels Mytilus and Environmental Factors. Genes, 2020, 11, 530.	1.0	36
10	SNP genotyping reveals substructuring in weakly differentiated populations of Atlantic cod (Gadus) Tj ETQq0 0 C) rgBT /Ov 1.6	erlock 10 Tf 5 10
11	Genetic Differentiation in Hatchery and Stocked Populations of Sea Trout in the Southern Baltic: Selection Evidence at SNP Loci. Genes, 2020, 11, 184.	1.0	7
12	Cryptic diversity in smooth-shelled mussels on Southern Ocean islands: connectivity, hybridisation and a marine invasion. Frontiers in Zoology, 2019, 16, 32.	0.9	21
13	Microarray analysis of gene expression of Atlantic cod from different Baltic Sea regions: Adaptation to salinity. Marine Genomics, 2019, 48, 100681.	0.4	4
14	Random forest assessment of correlation between environmental factors and genetic differentiation of populations: Case of marine mussels Mytilus. Oceanologia, 2019, 61, 131-142.	1.1	27
15	Mytilus trossulus in NW Greenland is genetically more similar to North Pacific than NW Atlantic populations of the species. Marine Biodiversity, 2019, 49, 1053-1059.	0.3	11
16	Mantle transcriptome sequencing of <i>Mytilus</i> spp. and identification of putative biomineralization genes. PeerJ, 2019, 6, e6245.	0.9	21
17	Native and invasive taxa on the Pacific coast of South America: Impacts on aquaculture, traceability and biodiversity of blue mussels (<i>Mytilus</i> spp.). Evolutionary Applications, 2018, 11, 298-311.	1.5	54

18Alternatively spliced variants in Atlantic cod (Gadus morhua) support response to variable salinity
environment. Scientific Reports, 2018, 8, 11607.1.611

Roman Wenne

#	Article	IF	CITATIONS
19	Single nucleotide polymorphisms in native South American Atlantic coast populations of smooth shelled mussels: hybridization with invasive European Mytilus galloprovincialis. Genetics Selection Evolution, 2018, 50, 5.	1.2	48
20	Single nucleotide polymorphism markers with applications in aquaculture and assessment of its impact on natural populations. Aquatic Living Resources, 2018, 31, 2.	0.5	26
21	The genetic approach for assessing sea trout stock enhancement efficiency – An example from the Vistula River. Archives of Polish Fisheries, 2017, 25, 65-75.	0.6	2
22	De novo assembly of the sea trout (Salmo trutta m. trutta) skin transcriptome to identify putative genes involved in the immune response and epidermal mucus secretion. PLoS ONE, 2017, 12, e0172282.	1.1	34
23	Complete male mitochondrial genomes of European <i>Mytilus edulis</i> mussels. Mitochondrial DNA, 2016, 27, 1-2.	0.6	4
24	SNP Arrays for Species Identification in Salmonids. Methods in Molecular Biology, 2016, 1452, 97-111.	0.4	7
25	Recent genetic changes in enhanced populations of sea trout (<i>Salmo trutta</i> m. <i>trutta</i>) in the southern Baltic rivers revealed with SNP analysis. Aquatic Living Resources, 2016, 29, 103.	0.5	13
26	Invasive blue mussels threaten regional scale genetic diversity in mainland and remote offshore locations: the need for baseline data and enhanced protection in the Southern Ocean. Global Change Biology, 2016, 22, 3182-3195.	4.2	49
27	The genetic relationship between extirpated and contemporary Atlantic salmon Salmo salar L. lines from the southern Baltic Sea. Genetics Selection Evolution, 2016, 48, 29.	1.2	6
28	Adaptation to salinity in Atlantic cod from different regions of the Baltic Sea. Journal of Experimental Marine Biology and Ecology, 2016, 478, 62-67.	0.7	18
29	A first report on coexistence and hybridization of Mytilus trossulus and M. edulis mussels in Greenland. Polar Biology, 2016, 39, 343-355.	0.5	52
30	Restitution and genetic differentiation of salmon populations in the southern Baltic genotyped with the Atlantic salmon 7K SNP array. Genetics Selection Evolution, 2015, 47, 39.	1.2	12
31	Transcriptome analysis of gill tissue of Atlantic cod Gadus morhua L. from the Baltic Sea. Marine Genomics, 2015, 23, 37-40.	0.4	18
32	Genetic differentiation of brackish water populations of cod Gadus morhua in the southern Baltic, inferred from genotyping using SNP-arrays. Marine Genomics, 2015, 19, 17-22.	0.4	36
33	New SNP markers reveal largely concordant clinal variation across the hybrid zone between Mytilus spp. in the Baltic Sea. Aquatic Biology, 2014, 21, 25-36.	0.5	51
34	Mitogenomics of recombinant mitochondrial genomes of Baltic Sea Mytilus mussels. Molecular Genetics and Genomics, 2014, 289, 1275-1287.	1.0	45
35	Genetic diversity within sea trout population from an intensively stocked southern Baltic river, based on microsatellite <scp>DNA</scp> analysis. Fisheries Management and Ecology, 2014, 21, 398-409.	1.0	11
36	Genetic differentiation of southeast Baltic populations of sea trout inferred from single nucleotide polymorphisms. Animal Genetics, 2014, 45, 96-104.	0.6	18

ROMAN WENNE

#	Article	IF	CITATIONS
37	Identification of multiple diagnostic SNP loci for differentiation of three salmonid species using SNP-arrays. Marine Genomics, 2014, 15, 5-6.	0.4	11
38	Glacial history of the European marine mussels Mytilus, inferred from distribution of mitochondrial DNA lineages. Heredity, 2014, 113, 250-258.	1.2	27
39	Molecular population genetics of male and female mitochondrial genomes in subarctic Mytilus trossulus. Marine Biology, 2013, 160, 1709-1721.	0.7	40
40	Genetic biodiversity in the Baltic Sea: species-specific patterns challenge management. Biodiversity and Conservation, 2013, 22, 3045-3065.	1.2	50
41	Genotyping of two populations of Southern Baltic Sea trout Salmo trutta m. trutta using an Atlantic salmon derived SNP-array. Marine Genomics, 2013, 9, 25-32.	0.4	26
42	Identification and validation of novel SNP markers in European populations of marine Mytilus mussels. Marine Biology, 2012, 159, 1347-1362.	0.7	51
43	Distribution of Mytilus taxa in European coastal areas as inferred from molecular markers. Journal of Sea Research, 2011, 65, 224-234.	0.6	59
44	The application of microarray technology to the identification of Tc1-like element sequences in fish genomes. Marine Biology Research, 2011, 7, 466-477.	0.3	4
45	Comparative Genomics of Marine Mussels (Mytilus spp.) Gender Associated mtDNA: Rapidly Evolving atp8. Journal of Molecular Evolution, 2010, 71, 385-400.	0.8	64
46	Identification of a Tc1-like transposon integration site in the genome of the flounder (Platichthys) Tj ETQq0 0	J rgBT /Over 0.4	rlock 10 Tf 50
47	Scottish Mytilus trossulus mussels retain ancestral mitochondrial DNA: Complete sequences of male and female mtDNA genomes. Gene, 2010, 456, 45-53.	1.0	49
48	Variation in the copy number of tandem repeats of mitochondrial DNA in the North-East Atlantic cod populations. Marine Biology Research, 2009, 5, 186-192.	0.3	9
49	Molecular identification of European flounder (Platichthys flesus) and its hybrids with European plaice (Pleuronectes platessa). ICES Journal of Marine Science, 2009, 66, 902-906.	1.2	33
50	Molecular population genetics of male and female mitochondrial genomes in European mussels Mytilus. Marine Biology, 2009, 156, 913-925.	0.7	41
51	Genetic composition of cultured and wild mussels Mytilus from The Netherlands and transfers from Ireland and Great Britain. Aquaculture, 2009, 287, 292-296.	1.7	36
52	Recombination in Mitochondrial DNA of European Mussels Mytilus. Journal of Molecular Evolution, 2008, 67, 377-388.	0.8	37
53	What role for genomics in fisheries management and aquaculture?. Aquatic Living Resources, 2007, 20, 241-255.	0.5	49
54	Family of Tc1-like elements from fish genomes and horizontal transfer. Gene, 2007, 390, 243-251.	1.0	10

ROMAN WENNE

#	Article	IF	CITATIONS
55	Complete sequences of mitochondrial genomes from the Baltic mussel Mytilus trossulus. Gene, 2007, 406, 191-198.	1.0	49
56	Introgression and mitochondrial DNA heteroplasmy in the Baltic populations of mussels Mytilus trossulus and M. edulis. Marine Biology, 2006, 149, 1371-1385.	0.7	59
57	Doubly Uniparental Inheritance Is Associated With High Polymorphism for Rearranged and Recombinant Control Region Haplotypes in Baltic Mytilus trossulus. Genetics, 2006, 174, 1081-1094.	1.2	49
58	Mitochondrial DNA lineages in the European populations of mussels (Mytilus spp.). Marine Biology, 2004, 146, 79-92.	0.7	50
59	Mitochondrial DNA variation in populations of the mussel Mytilus trossulus from the Southern Baltic. Hydrobiologia, 2003, 499, 1-12.	1.0	21
60	Doubly uniparental transmission of mitochondrial DNA length variants in the mussel Mytilus trossulus. Marine Biology, 2003, 142, 455-460.	0.7	29
61	Microsatellite DNA Polymorphism in Intensely Enhanced Populations of Sea Trout (Salmo trutta) in the Southern Baltic. Marine Biotechnology, 2003, 5, 234-243.	1.1	18
62	Evidence for Recombination of mtDNA in the Marine Mussel Mytilus trossulus from the Baltic. Molecular Biology and Evolution, 2003, 20, 388-392.	3.5	113
63	Genetic differentiation in hatchery and wild sea trout (Salmo trutta) in the Southern Baltic at microsatellite loci. Aquaculture, 2002, 204, 493-506.	1.7	69
64	Mitochondrial DNA variation in sea trout from coastal rivers in the southern Baltic region. ICES Journal of Marine Science, 2001, 58, 230-237.	1.2	9
65	Mitochondrial DNA heteroplasmy in European populations of the mussel Mytilus trossulus. Marine Biology, 1995, 122, 619-624.	0.7	46
66	Differential introgression of mitochondrial DNA across species boundaries within the marine mussel genus Mytilus. Proceedings of the Royal Society B: Biological Sciences, 1995, 262, 51-56.	1.2	39
67	Sterol composition of marine bivalves from the genus Macoma. Comparative Biochemistry and Physiology Part B: Comparative Biochemistry, 1990, 97, 81-82.	0.2	1
68	Seasonal changes in content and composition of sterols in the tissues of the bivalve Macoma balthica. Comparative Biochemistry and Physiology Part B: Comparative Biochemistry, 1989, 93, 711-713.	0.2	0
69	Lipid composition and storage in the tissues of the bivalve, Macoma balthica. Biochemical Systematics and Ecology, 1989, 17, 583-587.	0.6	24
70	A comparison of condition indices of Macoma Balthica (L.) from the northern and southern baltic sea. Journal of Sea Research, 1989, 23, 45-55.	1.0	27
71	Genetic affinities of the bivalve Macoma balthica from the Pacific coast of North America: evidence for recent introduction and historical distribution. Marine Biology, 1989, 102, 235-241.	0.7	28
72	Concentration of uranium and thorium in molluscs inhabiting Gdańsk Bay, Baltic sea. Science of the Total Environment, 1987, 65, 191-202.	3.9	18

#	Article	IF	CITATIONS
73	Seasonal changes in condition and lipids composition of the bivalve Macoma balthica L. from the gulf of Gdańsk (Southern Baltic). Comparative Biochemistry and Physiology Part B: Comparative Biochemistry, 1987, 88, 881-885.	0.2	7

Gross biochemical composition of the bivalve Macoma balthica from the Gulf of GdaÅ, sk (Southern) Tj ETQq0 0 0 rgBT /Overlock 10 Tf $\frac{15}{15}$

75	Anatomical distribution of lipids and sterols in Macoma balthica (L.). Comparative Biochemistry and Physiology Part B: Comparative Biochemistry, 1986, 85, 135-137.	0.2	13
76	Microgeographic differentiation in the lipid composition of the bivalve Macoma balthica from the Gulf of Gdańsk (Southern Baltic). Marine Biology, 1986, 91, 27-31.	0.7	13
77	DNAqua-Net: Developing new genetic tools for bioassessment and monitoring of aquatic ecosystems in Europe. Research Ideas and Outcomes, 0, 2, e11321.	1.0	154