Nicola F De Stefano

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9541577/publications.pdf

Version: 2024-02-01

289 papers 35,822 citations

7551 77 h-index 179 g-index

293 all docs

293 docs citations

times ranked

293

29987 citing authors

#	Article	IF	CITATIONS
1	Advances in functional and structural MR image analysis and implementation as FSL. NeuroImage, 2004, 23, S208-S219.	2.1	11,375
2	Accurate, Robust, and Automated Longitudinal and Cross-Sectional Brain Change Analysis. NeuroImage, 2002, 17, 479-489.	2.1	1,828
3	fMRI resting state networks define distinct modes of long-distance interactions in the human brain. Neurolmage, 2006, 29, 1359-1367.	2.1	1,124
4	MRI criteria for the diagnosis of multiple sclerosis: MAGNIMS consensus guidelines. Lancet Neurology, The, 2016, 15, 292-303.	4.9	679
5	Reversible decreases inN-acetylaspartate after acute brain injury. Magnetic Resonance in Medicine, 1995, 34, 721-727.	1.9	453
6	Normalized Accurate Measurement of Longitudinal Brain Change. Journal of Computer Assisted Tomography, 2001, 25, 466-475.	0.5	449
7	Evidence of Axonal Damage in the Early Stages of Multiple Sclerosis and Its Relevance to Disability. Archives of Neurology, 2001, 58, 65-70.	4.9	439
8	Clinical and imaging assessment of cognitive dysfunction in multiple sclerosis. Lancet Neurology, The, 2015, 14, 302-317.	4.9	437
9	Age-related changes in grey and white matter structure throughout adulthood. Neurolmage, 2010, 51, 943-951.	2.1	428
10	MAGNIMS consensus guidelines on the use of MRI in multiple sclerosisâ€"establishing disease prognosis and monitoring patients. Nature Reviews Neurology, 2015, 11, 597-606.	4.9	422
11	Association between pathological and MRI findings in multiple sclerosis. Lancet Neurology, The, 2012, 11, 349-360.	4.9	356
12	MAGNIMS consensus guidelines on the use of MRI in multiple sclerosisâ€"clinical implementation in the diagnostic process. Nature Reviews Neurology, 2015, 11, 471-482.	4.9	354
13	Longitudinal changes in grey and white matter during adolescence. Neurolmage, 2010, 49, 94-103.	2.1	352
14	Assessment of lesions on magnetic resonance imaging in multiple sclerosis: practical guidelines. Brain, 2019, 142, 1858-1875.	3.7	303
15	2021 MAGNIMS–CMSC–NAIMS consensus recommendations on the use of MRI in patients with multiple sclerosis. Lancet Neurology, The, 2021, 20, 653-670.	4.9	302
16	Deep gray matter volume loss drives disability worsening in multiple sclerosis. Annals of Neurology, 2018, 83, 210-222.	2.8	295
17	Chemical pathology of acute demyelinating lesions and its correlation with disability. Annals of Neurology, 1995, 38, 901-909.	2.8	288
18	Detection of Cortical Inflammatory Lesions by Double Inversion Recovery Magnetic Resonance Imaging in Patients With Multiple Sclerosis. Archives of Neurology, 2007, 64, 1416.	4.9	282

#	Article	IF	CITATIONS
19	Evaluating and reducing the impact of white matter lesions on brain volume measurements. Human Brain Mapping, 2012, 33, 2062-2071.	1.9	280
20	Progression of regional grey matter atrophy in multiple sclerosis. Brain, 2018, 141, 1665-1677.	3.7	269
21	Brain atrophy and lesion load predict long term disability in multiple sclerosis. Journal of Neurology, Neurosurgery and Psychiatry, 2013, 84, 1082-1091.	0.9	267
22	Changes in white matter microstructure during adolescence. NeuroImage, 2008, 39, 52-61.	2.1	262
23	Clinical Relevance of Brain Volume Measures in Multiple Sclerosis. CNS Drugs, 2014, 28, 147-156.	2.7	254
24	Radiologically Isolated Syndrome: 5-Year Risk for an Initial Clinical Event. PLoS ONE, 2014, 9, e90509.	1.1	254
25	Imaging of axonal damage in multiple sclerosis: Spatial distribution of magnetic resonance imaging lesions. Annals of Neurology, 1997, 41, 385-391.	2.8	253
26	Interferon beta-1a for brain tissue loss in patients at presentation with syndromes suggestive of multiple sclerosis: a randomised, double-blind, placebo-controlled trial. Lancet, The, 2004, 364, 1489-1496.	6.3	246
27	Treatment effect on brain atrophy correlates with treatment effect on disability in multiple sclerosis. Annals of Neurology, 2014, 75, 43-49.	2.8	240
28	Inclusion of brain volume loss in a revised measure of â€~no evidence of disease activity' (NEDA-4) in relapsing–remitting multiple sclerosis. Multiple Sclerosis Journal, 2016, 22, 1297-1305.	1.4	228
29	Scoring treatment response in patients with relapsing multiple sclerosis. Multiple Sclerosis Journal, 2013, 19, 605-612.	1.4	227
30	MRI and the diagnosis of multiple sclerosis: expanding the concept of "no better explanation― Lancet Neurology, The, 2006, 5, 841-852.	4.9	217
31	Cerebral Autosomal Dominant Arteriopathy with Subcortical Infarcts and Leukoencephalopathy (CADASIL) as a model of small vessel disease: update on clinical, diagnostic, and management aspects. BMC Medicine, 2017, 15, 41.	2.3	212
32	Association of Neocortical Volume Changes With Cognitive Deterioration in Relapsing-Remitting Multiple Sclerosis. Archives of Neurology, 2007, 64, 1157.	4.9	203
33	Pathogenesis of multiple sclerosis: insights from molecular and metabolic imaging. Lancet Neurology, The, 2014, 13, 807-822.	4.9	197
34	Distinction of seropositive NMO spectrum disorder and MS brain lesion distribution. Neurology, 2013, 80, 1330-1337.	1.5	189
35	Brain MRI atrophy quantification in MS. Neurology, 2017, 88, 403-413.	1.5	188
36	Comparison of two dosing frequencies of subcutaneous interferon beta-1a in patients with a first clinical demyelinating event suggestive of multiple sclerosis (REFLEX): a phase 3 randomised controlled trial. Lancet Neurology, The, 2012, 11, 33-41.	4.9	185

#	Article	IF	CITATIONS
37	The Relationship Between Diffuse Axonal Damage and Fatigue in Multiple Sclerosis. Archives of Neurology, 2004, 61, 201.	4.9	181
38	In vivo evidence for axonal dysfunction remote from focal cerebral demyelination of the type seen in multiple sclerosis. Brain, 1999, 122, 1933-1939.	3.7	176
39	Diffuse Axonal and Tissue Injury in Patients With Multiple Sclerosis With Low Cerebral Lesion Load and No Disability. Archives of Neurology, 2002, 59, 1565.	4.9	176
40	Multiple Sclerosis: Magnetization Transfer MR Imaging of White Matter before Lesion Appearance on T2-weighted Images. Radiology, 2000, 215, 824-830.	3.6	174
41	Axonal metabolic recovery in multiple sclerosis patients treated with interferon \hat{l}^2 -1b. Journal of Neurology, 2001, 248, 979-986.	1.8	171
42	Manifestations of early brain recovery associated with abstinence from alcoholism. Brain, 2006, 130, 36-47.	3.7	169
43	Blood oxygenation level dependent contrast resting state networks are relevant to functional activity in the neocortical sensorimotor system. Experimental Brain Research, 2005, 167, 587-594.	0.7	167
44	Establishing pathological cut-offs of brain atrophy rates in multiple sclerosis. Journal of Neurology, Neurosurgery and Psychiatry, 2016, 87, jnnp-2014-309903.	0.9	162
45	Relevance of cognitive deterioration in early relapsing-remitting MS: a 3-year follow-up study. Multiple Sclerosis Journal, 2010, 16, 1474-1482.	1.4	157
46	The current role of MRI in differentiating multiple sclerosis from its imaging mimics. Nature Reviews Neurology, 2018, 14, 199-213.	4.9	157
47	Optimizing treatment success in multiple sclerosis. Journal of Neurology, 2016, 263, 1053-1065.	1.8	155
48	MAGNIMS consensus recommendations on the use of brain and spinal cord atrophy measures in clinical practice. Nature Reviews Neurology, 2020, 16, 171-182.	4.9	150
49	Optimizing parameter choice for FSL-Brain Extraction Tool (BET) on 3D T1 images in multiple sclerosis. Neurolmage, 2012, 61, 1484-1494.	2.1	145
50	Choline is increased in pre-lesional normal appearing white matter in multiple sclerosis. Journal of Neurology, 2002, 249, 1382-1390.	1.8	142
51	Age-related Changes in Conventional, Magnetization Transfer, and Diffusion-Tensor MR Imaging Findings: Study with Whole-Brain Tissue Histogram Analysis1ÂÂ. Radiology, 2003, 227, 731-738.	3.6	134
52	Primary <scp>P</scp> rogressive <scp>M</scp> ultiple <scp>S</scp> clerosis <scp>E</scp> volving <scp>F</scp> rom <scp>R</scp> adiologically <scp>I</scp> solated <scp>S</scp> yndrome. Annals of Neurology, 2016, 79, 288-294.	2.8	130
53	Oxidative phosphorylation defect in the brains of carriers of the tRNAleu(UUR) A3243G mutation in a MELAS pedigree. Annals of Neurology, 2000, 47, 179-185.	2.8	125
54	The Present and the Future of Neuroimaging in Amyotrophic Lateral Sclerosis. American Journal of Neuroradiology, 2010, 31, 1769-1777.	1,2	124

#	Article	IF	CITATIONS
55	Magnetic resonance imaging and spectroscopic changes in brains of patients with cerebrotendinous xanthomatosis. Brain, 2001, 124, 121-131.	3.7	122
56	Magnetic Resonance Techniques in Multiple Sclerosis. Archives of Neurology, 2011, 68, 1514.	4.9	120
57	Evaluation of the Central Vein Sign as a Diagnostic Imaging Biomarker in Multiple Sclerosis. JAMA Neurology, 2019, 76, 1446.	4.5	119
58	Extensive cortical inflammation is associated with epilepsy in multiple sclerosis. Journal of Neurology, 2008, 255, 581-586.	1.8	116
59	Guidelines for using proton MR spectroscopy in multicenter clinical MS studies. Neurology, 2007, 69, 1942-1952.	1.5	114
60	Cognitive reserve and cortical atrophy in multiple sclerosis. Neurology, 2013, 80, 1728-1733.	1.5	113
61	Spinal cord involvement in multiple sclerosis and neuromyelitis optica spectrum disorders. Lancet Neurology, The, 2019, 18, 185-197.	4.9	110
62	Nonconventional MRI and microstructural cerebral changes in multiple sclerosis. Nature Reviews Neurology, 2015, 11, 676-686.	4.9	109
63	Magnetization transfer can predict clinical evolution in patients with multiple sclerosis. Journal of Neurology, 2002, 249, 662-668.	1.8	102
64	Defining and scoring response to IFN- \hat{l}^2 in multiple sclerosis. Nature Reviews Neurology, 2013, 9, 504-512.	4.9	101
65	Placebo-controlled trial of oral laquinimod in multiple sclerosis: MRI evidence of an effect on brain tissue damage. Journal of Neurology, Neurosurgery and Psychiatry, 2014, 85, 851-858.	0.9	101
66	Longitudinal and cross-sectional analysis of atrophy in Alzheimer's disease: Cross-validation of BSI, SIENA and SIENAX. Neurolmage, 2007, 36, 1200-1206.	2.1	100
67	Clinical use of brain volumetry. Journal of Magnetic Resonance Imaging, 2013, 37, 1-14.	1.9	100
68	Structural <scp>MRI</scp> correlates of cognitive impairment in patients with multiple sclerosis. Human Brain Mapping, 2016, 37, 1627-1644.	1.9	99
69	Assessing response to interferon- \hat{l}^2 in a multicenter dataset of patients with MS. Neurology, 2016, 87, 134-140.	1.5	98
70	Recommendations to improve imaging and analysis of brain lesion load and atrophy in longitudinal studies of multiple sclerosis. Journal of Neurology, 2013, 260, 2458-2471.	1.8	96
71	Structural and Functional Brain Changes beyond Visual System in Patients with Advanced Glaucoma. PLoS ONE, 2014, 9, e105931.	1.1	91
72	The hippocampus in multiple sclerosis. Lancet Neurology, The, 2018, 17, 918-926.	4.9	90

#	Article	IF	Citations
73	Unraveling treatment response in multiple sclerosis. Neurology, 2019, 92, 180-192.	1.5	88
74	Identifying the Distinct Cognitive Phenotypes in Multiple Sclerosis. JAMA Neurology, 2021, 78, 414.	4.5	86
75	Acute metabolic brain changes following traumatic brain injury and their relevance to clinical severity and outcome. Journal of Neurology, Neurosurgery and Psychiatry, 2006, 78, 501-507.	0.9	85
76	MR Spectroscopy in Multiple Sclerosis. Journal of Neuroimaging, 2007, 17, 31S-35S.	1.0	84
77	Optimizing therapy early in multiple sclerosis: An evidence-based view. Multiple Sclerosis and Related Disorders, 2015, 4, 460-469.	0.9	83
78	Intercenter differences in diffusion tensor MRI acquisition. Journal of Magnetic Resonance Imaging, 2010, 31, 1458-1468.	1.9	81
79	Quantitative magnetic resonance imaging towards clinical application in multiple sclerosis. Brain, 2021, 144, 1296-1311.	3.7	81
80	MRI characteristics of atypical idiopathic inflammatory demyelinating lesions of the brain. Journal of Neurology, 2008, 255, 1-10.	1.8	80
81	Hippocampal and Deep Gray Matter Nuclei Atrophy Is Relevant for Explaining Cognitive Impairment in MS: A Multicenter Study. American Journal of Neuroradiology, 2017, 38, 18-24.	1.2	80
82	MR correlates of cerebral atrophy in patients with multiple sclerosis. Journal of Neurology, 2002, 249, 1072-1077.	1.8	79
83	Longitudinal Assessment of Multiple Sclerosis with the Brainâ€Age Paradigm. Annals of Neurology, 2020, 88, 93-105.	2.8	79
84	In vivo differentiation of astrocytic brain tumors and isolated demyelinating lesions of the type seen in multiple sclerosis using 1H magnetic resonance spectroscopic imaging. Annals of Neurology, 1998, 44, 273-278.	2.8	78
85	Relevance of Brain Lesion Location to Cognition in Relapsing Multiple Sclerosis. PLoS ONE, 2012, 7, e44826.	1.1	78
86	Radiologically isolated syndrome or subclinical multiple sclerosis: MAGNIMS consensus recommendations. Multiple Sclerosis Journal, 2018, 24, 214-221.	1.4	77
87	Early changes of brain connectivity in primary open angle glaucoma. Human Brain Mapping, 2016, 37, 4581-4596.	1.9	76
88	Brain damage as detected by magnetization transfer imaging is less pronounced in benign than in early relapsing multiple sclerosis. Brain, 2006, 129, 2008-2016.	3.7	75
89	Relating functional changes during hand movement to clinical parameters in patients with multiple sclerosis in a multiâ€centre fMRI study. European Journal of Neurology, 2008, 15, 113-122.	1.7	75
90	Improving the Characterization of Radiologically Isolated Syndrome Suggestive of Multiple Sclerosis. PLoS ONE, 2011, 6, e19452.	1.1	74

#	Article	IF	CITATIONS
91	Magnetic resonance spectroscopy as a measure of brain damage in multiple sclerosis. Journal of the Neurological Sciences, 2005, 233, 203-208.	0.3	69
92	Imaging brain damage in first-degree relatives of sporadic and familial multiple sclerosis. Annals of Neurology, 2006, 59, 634-639.	2.8	69
93	Connectivityâ€based parcellation of the thalamus in multiple sclerosis and its implications for cognitive impairment: A multicenter study. Human Brain Mapping, 2015, 36, 2809-2825.	1.9	69
94	Brain Atrophy Assessment in Multiple Sclerosis: Importance and Limitations. Neuroimaging Clinics of North America, 2008, 18, 675-686.	0.5	68
95	The Cerebral Autosomal-Dominant Arteriopathy With Subcortical Infarcts and Leukoencephalopathy (CADASIL) Scale. Stroke, 2012, 43, 2871-2876.	1.0	68
96	MRI monitoring of immunomodulation in relapse-onset multiple sclerosis trials. Nature Reviews Neurology, 2012, 8, 13-21.	4.9	67
97	ADP Recovery After a Brief Ischemic Exercise in Normal and Diseased Human Muscle — a31P MRS Study. , 1996, 9, 165-172.		66
98	Voxel-wise assessment of progression of regional brain atrophy in relapsing-remitting multiple sclerosis. Journal of the Neurological Sciences, 2009, 282, 55-60.	0.3	66
99	Towards a better understanding of <i>pseudoatrophy</i> in the brain of multiple sclerosis patients. Multiple Sclerosis Journal, 2015, 21, 675-676.	1.4	64
100	Diffuse brain damage in normal tension glaucoma. Human Brain Mapping, 2018, 39, 532-541.	1.9	64
101	Brain metabolic changes suggestive of axonal damage in radiologically isolated syndrome. Neurology, 2013, 80, 2090-2094.	1.5	63
102	Imaging outcome measures for progressive multiple sclerosis trials. Multiple Sclerosis Journal, 2017, 23, 1614-1626.	1.4	62
103	EFNS guidelines on the use of neuroimaging in the management of multiple sclerosis. European Journal of Neurology, 2006, 13, 313-325.	1.7	61
104	Predicting outcome in clinically isolated syndrome using machine learning. NeuroImage: Clinical, 2015, 7, 281-287.	1.4	61
105	Enhanced brain extraction improves the accuracy of brain atrophy estimation. NeuroImage, 2008, 40, 583-589.	2.1	58
106	Large-scale, multicentre, quantitative MRI study of brain and cord damage in primary progressive multiple sclerosis. Multiple Sclerosis Journal, 2008, 14, 455-464.	1.4	58
107	MRI in Leber's hereditary optic neuropathy: the relationship to multiple sclerosis. Journal of Neurology, Neurosurgery and Psychiatry, 2015, 86, 537-542.	0.9	58
108	Moving toward earlier treatment of multiple sclerosis: Findings from a decade of clinical trials and implications for clinical practice. Multiple Sclerosis and Related Disorders, 2014, 3, 147-155.	0.9	57

#	Article	IF	Citations
109	¹¹ C-PBR28 and ¹⁸ F-PBR111 Detect White Matter Inflammatory Heterogeneity in Multiple Sclerosis. Journal of Nuclear Medicine, 2017, 58, 1477-1482.	2.8	57
110	Mitochondrial dysfunction in Rett syndrome. Brain and Development, 1993, 15, 103-106.	0.6	56
111	1H-MR Spectroscopy in Traumatic Brain Injury. Neurocritical Care, 2011, 14, 127-133.	1.2	55
112	Relationship of white and gray matter abnormalities to clinical and genetic features in myotonic dystrophy type 1. NeuroImage: Clinical, 2016, 11, 678-685.	1.4	55
113	Effect of Fingolimod on Brain Volume Loss in Patients with Multiple Sclerosis. CNS Drugs, 2017, 31, 289-305.	2.7	55
114	Reduced dynamics of functional connectivity and cognitive impairment in multiple sclerosis. Multiple Sclerosis Journal, 2020, 26, 476-488.	1.4	54
115	Location of brain lesions predicts conversion of clinically isolated syndromes to multiple sclerosis. Neurology, 2013, 80, 234-241.	1.5	53
116	A Novel NOTCH3 Frameshift Deletion and Mitochondrial Abnormalities in a Patient With CADASIL. Archives of Neurology, 2004, 61, 942.	4.9	52
117	Impairment of movement-associated brain deactivation in multiple sclerosis: further evidence for a functional pathology of interhemispheric neuronal inhibition. Experimental Brain Research, 2008, 187, 25-31.	0.7	52
118	Magnetic resonance active lesions as individual-level surrogate for relapses in multiple sclerosis. Multiple Sclerosis Journal, 2011, 17, 541-549.	1.4	52
119	Measuring Brain Atrophy in Multiple Sclerosis. Journal of Neuroimaging, 2007, 17, 10S-15S.	1.0	51
120	Abnormal connectivity of the sensorimotor network in patients with MS: A multicenter fMRI study. Human Brain Mapping, 2009, 30, 2412-2425.	1.9	51
121	Evidence of diffuse damage in frontal and occipital cortex in the brain of patients with post-traumatic stress disorder. Neurological Sciences, 2012, 33, 59-68.	0.9	51
122	Relevance of hypointense brain MRI lesions for long-term worsening of clinical disability in relapsing multiple sclerosis. Multiple Sclerosis Journal, 2014, 20, 214-219.	1.4	51
123	Reproducibility of fMRI in the clinical setting: Implications for trial designs. NeuroImage, 2008, 42, 603-610.	2.1	49
124	Impairment of muscle mitochondrial oxidative metabolism in McArdle's disease., 1996, 19, 764-769.		48
125	The burden of microstructural damage modulates cortical activation in elderly subjects with MCI and leukoâ€araiosis. A DTI and fMRI study. Human Brain Mapping, 2014, 35, 819-830.	1.9	48
126	Assessing Neuronal Metabolism In Vivo by Modeling Imaging Measures. Journal of Neuroscience, 2010, 30, 15030-15033.	1.7	47

#	Article	IF	Citations
127	Measurement of Whole-Brain and Gray Matter Atrophy in Multiple Sclerosis: Assessment with MR Imaging. Radiology, 2018, 288, 554-564.	3.6	47
128	Urgent challenges in quantification and interpretation of brain grey matter atrophy in individual MS patients using MRI. NeuroImage: Clinical, 2018, 19, 466-475.	1.4	47
129	Reduced brain atrophy rates are associated with lower risk of disability progression in patients with relapsing multiple sclerosis treated with cladribine tablets. Multiple Sclerosis Journal, 2018, 24, 222-226.	1.4	47
130	Guidelines from The Italian Neurological and Neuroradiological Societies for the use of magnetic resonance imaging in daily life clinical practice of multiple sclerosis patients. Neurological Sciences, 2013, 34, 2085-2093.	0.9	46
131	Natalizumab may reduce cognitive changes and brain atrophy rate in relapsing–remitting multiple sclerosis: a prospective, †non†andomized pilot study. European Journal of Neurology, 2013, 20, 986-990.	1.7	46
132	Influence of Apolipoprotein E ϵ4 Genotype on Brain Tissue Integrity in Relapsing-Remitting Multiple Sclerosis. Archives of Neurology, 2004, 61, 536.	4.9	45
133	Intercenter agreement of brain atrophy measurement in multiple sclerosis patients using manuallyâ€edited SIENA and SIENAX. Journal of Magnetic Resonance Imaging, 2007, 26, 881-885.	1.9	45
134	Automated identification of brain new lesions in multiple sclerosis using subtraction images. Journal of Magnetic Resonance Imaging, 2014, 39, 1543-1549.	1.9	45
135	Cognition in multiple sclerosis: relevance of lesions, brain atrophy and proton MR spectroscopy. Neurological Sciences, 2010, 31, 245-248.	0.9	44
136	The spectrum of magnetic resonance findings in cerebrotendinous xanthomatosis: redefinition and evidence of new markers of disease progression. Journal of Neurology, 2017, 264, 862-874.	1.8	43
137	Severe metabolic abnormalities in the white matter of patients with vacuolating megalencephalic leukoencephalopathy with subcortical cysts. A proton MR spectroscopic imaging study. Journal of Neurology, 2001, 248, 403-409.	1.8	42
138	Acute Unilateral Visual Loss as the First Symptom of Cerebral Autosomal Dominant Arteriopathy With Subcortical Infarcts and Leukoencephalopathy. Archives of Neurology, 2004, 61, 577.	4.9	42
139	Appraisal of Brain Connectivity in Radiologically Isolated Syndrome by Modeling Imaging Measures. Journal of Neuroscience, 2015, 35, 550-558.	1.7	42
140	MRI ASANOUTCOMEIN MULTIPLE SCLEROSIS CLINICAL TRIALS. Neurology, 2009, 73, 1932-1933.	1.5	41
141	Functional Reorganization of Motor Cortex Increases With Greater Axonal Injury From CADASIL. Stroke, 2002, 33, 502-508.	1.0	40
142	MRI and SPECT of midbrain and striatal degeneration in fragile X-associated tremor/ataxia syndrome. Journal of Neurology, 2008, 255, 144-146.	1.8	40
143	Regional cortical thinning in multiple sclerosis and its relation with cognitive impairment: A multicenter study. Multiple Sclerosis Journal, 2016, 22, 901-909.	1.4	40
144	Lifespan normative data on rates of brain volume changes. Neurobiology of Aging, 2019, 81, 30-37.	1.5	40

#	Article	IF	CITATIONS
145	Adult onset Niemann-Pick type C disease: A clinical, neuroimaging and molecular genetic study. Movement Disorders, 2003, 18, 1405-1409.	2.2	38
146	Voxel-Based Assessment of Differences in Damage and Distribution of White Matter Lesions Between Patients With Primary Progressive and Relapsing-Remitting Multiple Sclerosis. Archives of Neurology, 2008, 65, 236-43.	4.9	38
147	Short-term adaptation to a simple motor task: A physiological process preserved in multiple sclerosis. Neurolmage, 2009, 45, 500-511.	2.1	38
148	Subcutaneous interferon \hat{l}^2 -1a in the treatment of clinically isolated syndromes: 3-year and 5-year results of the phase III dosing frequency-blind multicentre REFLEXION study. Journal of Neurology, Neurosurgery and Psychiatry, 2017, 88, 285-294.	0.9	38
149	Systemic Blood Pressure Profile in Cerebral Autosomal Dominant Arteriopathy With Subcortical Infarcts and Leukoencephalopathy. Stroke, 2005, 36, 2554-2558.	1.0	37
150	Resting state fMRI regional homogeneity correlates with cognition measures in subcortical vascular cognitive impairment. Journal of the Neurological Sciences, 2017, 373, 1-6.	0.3	36
151	Right-to-Left Shunt in CADASIL Patients. Stroke, 2008, 39, 2155-2157.	1.0	34
152	Refining response to treatment as defined by the Modified Rio Score. Multiple Sclerosis Journal, 2013, 19, 1246-1247.	1.4	34
153	Operationalizing mild cognitive impairment criteria in small vessel disease: the VMCI-Tuscany Study. , 2016, 12, 407-418.		34
154	Defining brain volume cutoffs to identify clinically relevant atrophy in RRMS. Multiple Sclerosis Journal, 2017, 23, 656-664.	1.4	34
155	Neurodegeneration in friedreich's ataxia is associated with a mixed activation pattern of the brain. A fMRI study. Human Brain Mapping, 2012, 33, 1780-1791.	1.9	33
156	Genome-Wide Genotyping Demonstrates a Polygenic Risk Score Associated With White Matter Hyperintensity Volume in CADASIL. Stroke, 2014, 45, 968-972.	1.0	33
157	Pathological cut-offs of global and regional brain volume loss in multiple sclerosis. Multiple Sclerosis Journal, 2019, 25, 541-553.	1.4	32
158	MRI Correlates of Disability in African-Americans with Multiple Sclerosis. PLoS ONE, 2012, 7, e43061.	1.1	32
159	Basic concepts of advanced MRI techniques. Neurological Sciences, 2008, 29, 290-295.	0.9	31
160	Early structural changes in individuals at risk of familial Alzheimer's disease: a volumetry and magnetization transfer MR imaging study. Journal of Neurology, 2009, 256, 925-932.	1.8	31
161	Rapid benefits of a new formulation of subcutaneous interferon beta-1a in relapsing—remitting multiple sclerosis. Multiple Sclerosis Journal, 2010, 16, 888-892.	1.4	31
162	Efficacy and safety of subcutaneous interferon beta-1a in relapsing–remitting multiple sclerosis: Further outcomes from the IMPROVE study. Journal of the Neurological Sciences, 2012, 312, 97-101.	0.3	31

#	Article	IF	CITATIONS
163	Neurological involvement and quadricuspid aortic valve in a patient with Ehlers-Danlos syndrome. Journal of Neurology, 1999, 246, 612-613.	1.8	30
164	Neocortical volume decrease in relapsing–remitting multiple sclerosis with mild cognitive impairment. Journal of the Neurological Sciences, 2006, 245, 195-199.	0.3	30
165	Cortical functional reorganization and its relationship with brain structural damage in patients with benign multiple sclerosis. Multiple Sclerosis Journal, 2010, 16, 1326-1334.	1.4	30
166	A human post-mortem brain model for the standardization of multi-centre MRI studies. NeuroImage, 2015, 110, 11-21.	2.1	30
167	Fingolimod effect on brain volume loss independently contributes to its effect on disability. Multiple Sclerosis Journal, 2015, 21, 916-924.	1.4	30
168	A practical review of the neuropathology and neuroimaging of multiple sclerosis. Practical Neurology, 2016, 16, 279-287.	0.5	30
169	Diagnosis of Progressive Multiple Sclerosis From the Imaging Perspective. JAMA Neurology, 2021, 78, 351.	4.5	30
170	Cherry-Red Spot Myoclonus Syndrome (Type I Sialidosis). Developmental Neuroscience, 1991, 13, 320-326.	1.0	29
171	Knee impingement syndromes. European Journal of Radiology, 1998, 27, S60-S69.	1.2	28
172	<i>APOE É></i> 2 is associated with white matter hyperintensity volume in CADASIL. Journal of Cerebral Blood Flow and Metabolism, 2016, 36, 199-203.	2.4	28
173	Alterations in Functional and Structural Connectivity in Pediatric-Onset Multiple Sclerosis. PLoS ONE, 2016, 11, e0145906.	1.1	28
174	Abnormal oxidative metabolism in exercise in exercise intolerance of undetermined origin. Neuromuscular Disorders, 1997, 7, 99-104.	0.3	27
175	Cortical damage in brains of patients with adult-form of myotonic dystrophy type 1 and no or minimal MRI abnormalities. Journal of Neurology, 2006, 253, 1471-1477.	1.8	27
176	Adult polyglucosan body disease: Proton magnetic resonance spectroscopy of the brain and novel mutation in the <i>GBE1</i> gene. Muscle and Nerve, 2008, 37, 530-536.	1.0	27
177	Plasma Levels of Asymmetric Dimethylarginine in Cerebral Autosomal Dominant Arteriopathy with Subcortical Infarct and Leukoencephalopathy. Cerebrovascular Diseases, 2008, 26, 636-640.	0.8	27
178	Time to first relapse as an endpoint in multiple sclerosis clinical trials. Multiple Sclerosis Journal, 2013, 19, 466-474.	1.4	27
179	Effective Utilization of MRIÂin the Diagnosis and Management of Multiple Sclerosis. Neurologic Clinics, 2018, 36, 27-34.	0.8	27
180	Cardiac Autonomic Nervous System and Risk of Arrhythmias in Cerebral Autosomal Dominant Arteriopathy With Subcortical Infarcts and Leukoencephalopathy (CADASIL). Stroke, 2007, 38, 276-280.	1.0	26

#	Article	IF	CITATIONS
181	Risk and Determinants of Dementia in Patients with Mild Cognitive Impairment and Brain Subcortical Vascular Changes: A Study of Clinical, Neuroimaging, and Biological Markers—The VMCI-Tuscany Study: Rationale, Design, and Methodology. International Journal of Alzheimer's Disease, 2012, 2012, 1-7.	1.1	26
182	Long-term assessment of no evidence of disease activity in relapsing-remitting MS. Neurology, 2015, 85, 1722-1723.	1.5	26
183	Advanced Structural and Functional Brain MRI in Multiple Sclerosis. Seminars in Neurology, 2016, 36, 163-176.	0.5	26
184	A multicentre study of motor functional connectivity changes in patients with multiple sclerosis. European Journal of Neuroscience, 2011, 33, 1256-1263.	1.2	25
185	Retinal Nerve Fiber Layer Thinning in CADASIL: An Optical Coherence Tomography and MRI Study. Cerebrovascular Diseases, 2011, 31, 77-82.	0.8	25
186	Estimates of age-dependent cutoffs for pathological brain volume loss using SIENA/FSLâ€"a longitudinal brain volumetry study in healthy adults. Neurobiology of Aging, 2018, 65, 1-6.	1.5	25
187	Self-paced frequency of a simple motor task and brain activation. NeuroImage, 2007, 38, 402-412.	2.1	24
188	Peripheral neuropathy in CADASIL. Journal of Neurology, 2005, 252, 1206-1209.	1.8	23
189	Diffuse structural and metabolic brain changes in Fabry disease. Journal of Neurology, 2006, 253, 434-440.	1.8	23
190	Magnetization Transfer MR Imaging Demonstrates Degeneration of the Subcortical and Cortical Gray Matter in Huntington Disease. American Journal of Neuroradiology, 2010, 31, 1807-1812.	1.2	23
191	Isoprostanes in clinically isolated syndrome and early multiple sclerosis as biomarkers of tissue damage and predictors of clinical course. Multiple Sclerosis Journal, 2013, 19, 411-417.	1.4	23
192	Efficacy of subcutaneous interferon \hat{A} -1a on MRI outcomes in a randomised controlled trial of patients with clinically isolated syndromes. Journal of Neurology, Neurosurgery and Psychiatry, 2014, 85, 647-653.	0.9	23
193	Effect of fingolimod on diffuse brain tissue damage in relapsing-remitting multiple sclerosis patients. Multiple Sclerosis and Related Disorders, 2016, 7, 98-101.	0.9	23
194	Pronounced focal and diffuse brain damage predicts short-term disease evolution in patients with clinically isolated syndrome suggestive of multiple sclerosis. Multiple Sclerosis Journal, 2011, 17, 1432-1440.	1.4	22
195	The results of two multicenter, open-label studies assessing efficacy, tolerability and safety of protiramer, a high molecular weight synthetic copolymeric mixture, in patients with relapsing–remitting multiple sclerosis. Multiple Sclerosis Journal, 2009, 15, 238-243.	1.4	21
196	APOE-ε4 is not associated with cognitive impairment in relapsing—remitting multiple sclerosis. Multiple Sclerosis Journal, 2009, 15, 1489-1494.	1.4	21
197	Subclinical motor impairment assessed with an engineered glove correlates with magnetic resonance imaging tissue damage in radiologically isolated syndrome. European Journal of Neurology, 2019, 26, 162-167.	1.7	21
198	Gray matter atrophy cannot be fully explained by white matter damage in patients with MS. Multiple Sclerosis Journal, 2021, 27, 39-51.	1.4	21

#	Article	IF	CITATIONS
199	Optic Atrophy in Marinesco-Sjögren Syndrome: An Additional Ocular Feature: Report of three Cases in two Families. Ophthalmic Paediatrics and Genetics, 1993, 14, 5-7.	0.4	20
200	Magnetic resonance imaging as surrogate for clinical endpoints in multiple sclerosis: data on novel oral drugs. Multiple Sclerosis Journal, 2011, 17, 630-633.	1.4	20
201	Clinical Course of Two Italian Siblings with Ataxia-Telangiectasia-Like Disorder. Cerebellum, 2013, 12, 596-599.	1.4	20
202	Prognostic biomarkers of IFNb therapy in multiple sclerosis patients. Multiple Sclerosis Journal, 2015, 21, 894-904.	1.4	20
203	SIENAâ€XL for improving the assessment of gray and white matter volume changes on brain MRI. Human Brain Mapping, 2018, 39, 1063-1077.	1.9	20
204	Manual and automated tissue segmentation confirm the impact of thalamus atrophy on cognition in multiple sclerosis: A multicenter study. NeuroImage: Clinical, 2021, 29, 102549.	1.4	20
205	Leukoencephalopathy as a rare complication of hepatitis C infection. Neurological Sciences, 2006, 27, 360-363.	0.9	19
206	Structural and metabolic damage in brains of patients with SPG11-related spastic paraplegia as detected by quantitative MRI. Journal of Neurology, 2011, 258, 2240-2247.	1.8	19
207	Magnetization Transfer Imaging Demonstrates a Distributed Pattern of Microstructural Changes of the Cerebral Cortex in Amyotrophic Lateral Sclerosis. American Journal of Neuroradiology, 2011, 32, 704-708.	1.2	19
208	Pronounced Structural and Functional Damage in Early Adult Pediatric-Onset Multiple Sclerosis with No or Minimal Clinical Disability. Frontiers in Neurology, 2017, 8, 608.	1.1	19
209	Peak width of skeletonized mean diffusivity (PSMD) as marker of widespread white matter tissue damage in multiple sclerosis. Multiple Sclerosis and Related Disorders, 2019, 27, 294-297.	0.9	19
210	Merosin positive congenital muscular dystrophy with severe involvement of the central nervous system. Brain and Development, 1996, 18, 323-326.	0.6	18
211	Impaired vasoreactivity in mildly disabled CADASIL patients. Journal of Neurology, Neurosurgery and Psychiatry, 2012, 83, 268-274.	0.9	18
212	Within-patient fluctuation of brain volume estimates from short-term repeated MRI measurements using SIENA/FSL. Journal of Neurology, 2018, 265, 1158-1165.	1.8	18
213	Learning ability correlates with brain atrophy and disability progression in RRMS. Journal of Neurology, Neurosurgery and Psychiatry, 2019, 90, 38-43.	0.9	18
214	A Deep Learning Approach to Predicting Disease Progression in Multiple Sclerosis Using Magnetic Resonance Imaging. Investigative Radiology, 2022, 57, 423-432.	3.5	18
215	Slowly expanding lesions relate to persisting black-holes and clinical outcomes in relapse-onset multiple sclerosis. NeuroImage: Clinical, 2022, 35, 103048.	1.4	17
216	Hemodynamic Evaluation of the Optic Nerve Head in Cerebral Autosomal Dominant Arteriopathy With Subcortical Infarcts and Leukoencephalopathy. Archives of Neurology, 2004, 61, 1230-3.	4.9	16

#	Article	IF	Citations
217	Effects of Sapropterin on Endothelium-Dependent Vasodilation in Patients With CADASIL. Stroke, 2014, 45, 2959-2966.	1.0	16
218	The role of dentate nuclei in human oculomotor control: insights from cerebrotendinous xanthomatosis. Journal of Physiology, 2017, 595, 3607-3620.	1.3	16
219	DTI-derived indexes of brain WM correlate with cognitive performance in vascular MCI and small-vessel disease. A TBSS study. Brain Imaging and Behavior, 2019, 13, 594-602.	1.1	16
220	MRI quality control for the Italian Neuroimaging Network Initiative: moving towards big data in multiple sclerosis. Journal of Neurology, 2019, 266, 2848-2858.	1,8	16
221	Changes in grey matter volume and functional connectivity in cluster headache versus migraine. Brain Imaging and Behavior, 2020, 14, 496-504.	1.1	16
222	Predicting long-term disability outcomes in patients with MS treated with teriflunomide in TEMSO. Neurology: Neuroimmunology and NeuroInflammation, 2017, 4, e379.	3.1	15
223	How much do periventricular lesions assist in distinguishing migraine with aura from CIS?. Neurology, 2019, 92, e1739-e1744.	1.5	15
224	Analysis of frequency and severity of relapses in multiple sclerosis patients treated with cladribine tablets or placebo: The CLARITY and CLARITY Extension studies. Multiple Sclerosis Journal, 2022, 28, 111-120.	1.4	15
225	Quantification of brain damage in cerebrotendinous xanthomatosis with magnetization transfer MR imaging. American Journal of Neuroradiology, 2003, 24, 495-500.	1.2	15
226	Early Reduction of MRI Activity During 6 Months of Treatment With Cladribine Tablets for Highly Active Relapsing Multiple Sclerosis. Neurology: Neuroimmunology and NeuroInflammation, 2022, 9, .	3.1	15
227	Bimonthly assessment of magnetization transfer magnetic resonance imaging parameters in multiple sclerosis: a 14-month, multicentre, follow-up study. Multiple Sclerosis Journal, 2010, 16, 325-331.	1.4	14
228	Reduced accuracy of MRI deep grey matter segmentation in multiple sclerosis: an evaluation of four automated methods against manual reference segmentations in a multi-center cohort. Journal of Neurology, 2020, 267, 3541-3554.	1.8	14
229	Dynamics of pseudoâ€atrophy in RRMS reveals predominant gray matter compartmentalization. Annals of Clinical and Translational Neurology, 2021, 8, 623-630.	1.7	14
230	MR evidence of structural and metabolic changes in brains of patients with Werner?s syndrome. Journal of Neurology, 2003, 250, 1169-1173.	1.8	13
231	Modeling the Distribution of New MRI Cortical Lesions in Multiple Sclerosis Longitudinal Studies. PLoS ONE, 2011, 6, e26712.	1.1	13
232	Patient subgroup analyses of the treatment effect of subcutaneous interferon \hat{l}^2 -1a on development of multiple sclerosis in the randomized controlled REFLEX study. Journal of Neurology, 2014, 261, 490-499.	1.8	13
233	Non-progressive leukoencephalopathy with bilateral anterior temporal cysts: a case report and review of the literature. Brain and Development, 2005, 27, 73-77.	0.6	12
234	Magnetic Resonance Imaging in Alzheimer's Disease: from Diagnosis to Monitoring Treatment Effect. Current Alzheimer Research, 2012, 9, 1198-1209.	0.7	12

#	Article	IF	CITATIONS
235	A novel approach with "skeletonised MTR―measures tractâ€specific microstructural changes in early primaryâ€progressive MS. Human Brain Mapping, 2014, 35, 723-733.	1.9	12
236	Relevance of brain lesion location for cognition in vascular mild cognitive impairment. NeuroImage: Clinical, 2019, 22, 101789.	1.4	12
237	Short-term combination of glatiramer acetate with IV steroid treatment preceding treatment with GA alone assessed by MRI-disease activity in patients with relapsing–remitting multiple sclerosis. Journal of the Neurological Sciences, 2008, 266, 44-50.	0.3	11
238	Relationship between brain MRI lesion load and short-term disease evolution in non-disabling MS: a large-scale, multicentre study. Multiple Sclerosis Journal, 2011, 17, 319-326.	1.4	11
239	Modelling the distribution of cortical lesions in multiple sclerosis. Multiple Sclerosis Journal, 2012, 18, 229-231.	1.4	11
240	Structural and Functional Connectivity Substrates of Cognitive Impairment in Multiple Sclerosis. Frontiers in Neurology, 2021, 12, 671894.	1.1	11
241	MAGNIMS recommendations for harmonization of MRI data in MS multicenter studies. NeuroImage: Clinical, 2022, 34, 102972.	1.4	11
242	Brain mitochondrial impairment in ethylmalonic encephalopathy. Journal of Neurology, 2004, 251, 755-6.	1.8	10
243	MRâ€compatible device for monitoring hand tracing and writing tasks in fMRI with an application to healthy subjects. Concepts in Magnetic Resonance Part A: Bridging Education and Research, 2010, 36A, 139-152.	0.2	10
244	Altered Large-Scale Brain Functional Connectivity in Ocular Hypertension. Frontiers in Neuroscience, 2020, 14, 146.	1.4	10
245	Magnetic resonance imaging of pancreatic carcinoma. European Radiology, 1991, 1, 124-130.	2.3	9
246	Increased QT variability in cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy. European Journal of Neurology, 2008, 15, 1216-1221.	1.7	9
247	MRI Prognostic Factors in Multiple Sclerosis, Neuromyelitis Optica Spectrum Disorder, and Myelin Oligodendrocyte Antibody Disease. Frontiers in Neurology, 2021, 12, 679881.	1.1	9
248	Secondary Prevention in Radiologically Isolated Syndromes and Prodromal Stages of Multiple Sclerosis. Frontiers in Neurology, 2022, 13, 787160.	1.1	9
249	The radiologically isolated syndrome dilemma: just an incidental radiological finding or presymptomatic multiple sclerosis?. Multiple Sclerosis Journal, 2013, 19, 257-258.	1.4	8
250	Cortical lesion counts by double inversion recovery should be part of the MRI monitoring process for all MS patients: Yes. Multiple Sclerosis Journal, 2014, 20, 537-538.	1.4	8
251	MAGNIMS score predicts long-term clinical disease activity-free status and confirmed disability progression in patients treated with subcutaneous interferon beta-1a. Multiple Sclerosis and Related Disorders, 2021, 49, 102790.	0.9	8
252	A new missense mutation in caveolin-3 gene causes rippling muscle disease. Journal of the Neurological Sciences, 2006, 243, 61-64.	0.3	7

#	Article	IF	CITATIONS
253	GABA: a new imaging biomarker of neurodegeneration in multiple sclerosis?. Brain, 2015, 138, 2467-2468.	3.7	7
254	The dilemma of benign multiple sclerosis: Can we predict the risk of losing the "benign status� A 12-year follow-up study. Multiple Sclerosis and Related Disorders, 2018, 26, 71-73.	0.9	6
255	Peak width of skeletonized mean diffusivity (PSMD) and cognitive functions in relapsing-remitting multiple sclerosis. Brain Imaging and Behavior, 2021, 15, 2228-2233.	1.1	6
256	Relation of sensorimotor and cognitive cerebellum functional connectivity with brain structural damage in patients with multiple sclerosis and no disability. European Journal of Neurology, 2022, 29, 2036-2046.	1.7	6
257	Evolution from a first clinical demyelinating event to multiple sclerosis in the REFLEX trial: Regional susceptibility in the conversion to multiple sclerosis at disease onset and its amenability to subcutaneous interferon beta†a. European Journal of Neurology, 2022, 29, 2024-2035.	1.7	6
258	LONGITUDINAL FOLLOW-UP OF "BENIGN―MULTIPLE SCLEROSIS AT 20 YEARS. Neurology, 2007, 69, 938-93	91.5	5
259	A case of ovarioleukodystrophy without eIF2B mutations. Journal of the Neurological Sciences, 2008, 268, 183-186.	0.3	5
260	MRI measures should be a primary outcome endpoint in Phase III randomized, controlled trials in multiple sclerosis: Yes. Multiple Sclerosis Journal, 2014, 20, 280-281.	1.4	5
261	Natalizumab discontinuation in the increasing complexity of multiple sclerosis therapy. Neurology, 2014, 82, 1484-1485.	1.5	5
262	MRI monitoring of spinal cord changes in patients with multiple sclerosis. Current Opinion in Neurology, 2016, 29, 445-452.	1.8	5
263	A Semiautomatic Method for Multiple Sclerosis Lesion Segmentation on Dual-Echo MR Imaging: Application in a Multicenter Context. American Journal of Neuroradiology, 2016, 37, 2043-2049.	1.2	5
264	Validating the use of brain volume cutoffs to identify clinically relevant atrophy in RRMS. Multiple Sclerosis Journal, 2019, 25, 217-223.	1.4	5
265	Association of myopathy with multiple exostoses and mental retardation: a case report. Brain and Development, 1994, 16, 136-138.	0.6	4
266	Diffuse metabolic changes in the brain of patients with familial amyloid polyneuropathy. A proton MRSI study. Journal of the Neurological Sciences, 2006, 246, 31-35.	0.3	4
267	Proton Magnetic Resonance Spectroscopy in Brain Metabolic Disorders. Klinische Neuroradiologie, 2007, 17, 223-229.	0.9	4
268	Gray matter atrophy correlates with MS disability progression measured with MSFC but not EDSS. Journal of the Neurological Sciences, 2009, 284, 223.	0.3	4
269	Mapping the Progressive Treatment-Related Reduction of Active MRI Lesions in Multiple Sclerosis. Frontiers in Neurology, 2020, 11, 585296.	1.1	4
270	Cerebral Thromboangiitis obliterans: Clinical and MRI Findings in a Case. European Neurology, 1995, 35, 246-248.	0.6	3

#	Article	IF	CITATIONS
271	Vitamin D levels in cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL). Neurological Sciences, 2017, 38, 1333-1336.	0.9	3
272	Mild gray matter atrophy in patients with long-standing multiple sclerosis and favorable clinical course. Multiple Sclerosis Journal, 2022, 28, 154-159.	1.4	3
273	Clinically relevant profiles of myelin content changes in patients with multiple sclerosis: A multimodal and multicompartment imaging study. Multiple Sclerosis Journal, 2022, 28, 1881-1890.	1.4	3
274	Leukoencephalopathies and metabolic diseases. Neurological Sciences, 2008, 29, 323-326.	0.9	2
275	Combined MRI Lesions and Relapses as a Surrogate for Disability in MS. Neurology, 2012, 78, 1367-1367.	1.5	2
276	Spinal cord imaging in multiple sclerosis. Neurology, 2014, 83, 1306-1307.	1.5	2
277	Advanced MRI measures like DTI or fMRI should be outcome measures in future clinical trials – Commentary. Multiple Sclerosis Journal, 2017, 23, 1458-1460.	1.4	2
278	Response to Letter by Mazzucco et al. Stroke, 2008, 39, .	1.0	1
279	Twelve-year monitoring of a patient with megalencephalic leukoencephalopathy with subcortical cysts. Neurological Sciences, 2014, 35, 1249-53.	0.9	1
280	Response to †Does cladribine have an impact on brain atrophy in people with relapsing remitting multiple sclerosis?†by Schiffmann et al Multiple Sclerosis Journal, 2018, 24, 1388-1389.	1.4	1
281	MRS in brain tumors. , 0, , 61-90.		1
282	MRS in cerebral metabolic disorders. , 0, , 180-211.		1
283	Response to the letter "Progression of gray matter atrophy and its association with white matter lesions in relapsing–remitting multiple sclerosis―by Bendfeldt et al Journal of the Neurological Sciences, 2009, 285, 269.	0.3	O
284	Response to Letter by Mazzucco et al. Stroke, 2009, 40, .	1.0	0
285	Clinical use of brain volumetry. Journal of Magnetic Resonance Imaging, 2013, 37, spcone-spcone.	1.9	O
286	Reply. Annals of Neurology, 2014, 75, 463-464.	2.8	0
287	Multiple Sclerosis and Inflammatory Diseases. , 2014, , 162-171.		0
288	Introduction to MR spectroscopy in vivo. , 2009, , 1-18.		0

ARTICLE IF CITATIONS

289 MRS in infectious, inflammatory, and demyelinating lesions., 0, , 110-130. 0