Xiaowen Zhao

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9541510/publications.pdf

Version: 2024-02-01

56	1,074	19	29
papers	citations	h-index	g-index
56	56	56	1205
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Reactive processing of poly(lactic acid)/poly(ethylene octene) blend film with tailored interfacial intermolecular entanglement and toughening mechanism. Journal of Materials Science and Technology, 2022, 98, 186-196.	5.6	11
2	Thermal stability enhancement of oriented polyethylene by formation of epitaxial shish-kebab crystalline structure. Polymer Degradation and Stability, 2022, 195, 109771.	2.7	7
3	Triple-shape memory effect of long-chain branched Poly(lactic acid)-b-poly(lactide-co-caprolactone) and its controllable shape recovery as self-fastening smart bone fixture. Polymer, 2022, 238, 124421.	1.8	3
4	Structure Evolution of Highly Oriented Poly(lactic acid)- <i>b</i> -poly(lactide- <i>co</i> -caprolactone) Block Copolymer during Two-Stage Solid Phase Hot Drawing. Industrial & Engineering Chemistry Research, 2022, 61, 2110-2125.	1.8	1
5	Reinforcing ureaâ€formaldehyde based composite foam by formation of tailored chemical/mechanical interlocking structure. Polymer Composites, 2022, 43, 2208-2221.	2.3	5
6	Low Percolation Threshold and Enhanced Electromagnetic Interference Shielding in Polyoxymethylene/Carbon Nanotube Nanocomposites with Conductive Segregated Networks. Industrial & Samp; Engineering Chemistry Research, 2022, 61, 3962-3972.	1.8	10
7	Polyoxymethylene/Reduced Graphene Oxide-g-Melamine Nano-composites With Low Formaldehyde Emission: Intercalation Structure and Synergistic Thermal Oxidative Stabilization Effect. Polymer Degradation and Stability, 2022, 198, 109876.	2.7	7
8	Formation and reinforcing effect of epitaxial oriented crystallization of polyethylene induced by selfâ€assembly nucleating agent under stress. Polymer International, 2022, 71, 817-828.	1.6	3
9	Biocompatibility improvement and controlled in vitro degradation of poly (lactic) Tj ETQq1 1 0.784314 rgBT /Ove orthopedic application. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2022, 110. 2480-2493.	erlock 10 T 1.6	Tf 50 432 Td(2
10	Poly(vinyl alcohol)/graphene oxide nanocomposite hydrogel with catalytic activity: the removal behavior and dual adsorption/catalytic degradation mechanism for dye wastewater. Polymer International, 2021, 70, 331-340.	1.6	10
11	Fabrication of well-miscible and highly enhanced polyethylene/ultrahigh molecular weight polyethylene blends by facile construction of interfacial intermolecular entanglement. Polymer Testing, 2021, 93, 106973.	2.3	15
12	Highly reinforcing effect of polycarbonate/poly(ethylene terephthalate) blends by formation of orientation microfibrillar structure. Polymer International, 2021, 70, 1386-1395.	1.6	1
13	Tailored Bonded Interfacial Intermolecular Entanglement of Polyethylene/Ultrahigh-Molecular-Weight Polyethylene Blends: Enhancing Miscibility, Reinforcement, and Friction Reduction. Industrial & Engineering Chemistry Research, 2021, 60, 5879-5889.	1.8	10
14	Polyoxymethylene/Carbon Nanotube Self-Assembly Networks with Improved Electrical Conductivity for Engineering Functional Structural Materials. ACS Applied Nano Materials, 2021, 4, 9606-9615.	2.4	9
15	Highly Reinforced Poly(lactic acid) Foam Fabricated by Formation of a Heat-Resistant Oriented Stereocomplex Crystalline Structure. ACS Sustainable Chemistry and Engineering, 2021, 9, 12674-12686.	3.2	18
16	Compatibility and toughening mechanism of poly(ethylene terephthalate)/polycarbonate blends. Polymer International, 2020, 69, 1297-1307.	1.6	3
17	Dual-Anchoring Intercalation Structure and Enhanced Bioactivity of Poly(vinyl alcohol)/Graphene Oxide–Hydroxyapatite Nanocomposite Hydrogels as Artificial Cartilage Replacement. Industrial & Engineering Chemistry Research, 2020, 59, 20359-20370.	1.8	13
18	Facile Method to Fabricate Superstrong and Tough Poly(vinyl alcohol) Hydrogels with High Energy Dissipation. Industrial & Engineering Chemistry Research, 2020, 59, 10705-10715.	1.8	24

#	Article	IF	CITATIONS
19	In situ preparation of intrinsic flame-retardant urea formaldehyde/carbon nanotubes nanocomposite foam: structure and reinforcing mechanism. Polymer-Plastics Technology and Materials, 2020, 59, 1640-1653.	0.6	1
20	Enhancing Poly(lactic acid) Microcellular Foams by Formation of Distinctive Crystalline Structures. Industrial & Engineering Chemistry Research, 2020, 59, 7624-7632.	1.8	7
21	Polyoxymethylene/graphene oxide-perfluoropolyether nano-composite with ultra-low friction coefficient fabricated by formation of superior interfacial tribofilm. Composites Part A: Applied Science and Manufacturing, 2020, 132, 105856.	3.8	22
22	Long-Chain Branched Poly(lactic acid)- <i>b</i> -poly(lactide- <i>co</i> -caprolactone): Structure, Viscoelastic Behavior, and Triple-Shape Memory Effect as Smart Bone Fixation Material. Industrial & Engineering Chemistry Research, 2020, 59, 4524-4532.	1.8	25
23	Facile construction of robust super-hydrophobic coating for urea-formaldehyde foam: Durable hydrophobicity and Self-cleaning ability. Composites Part A: Applied Science and Manufacturing, 2020, 132, 105831.	3.8	17
24	Construction of gradient structure in polyetherimide/carbon nanotube nanocomposite foam and its thermal/mechanical property. Composites Part A: Applied Science and Manufacturing, 2019, 126, 105579.	3.8	17
25	Reactive toughening of intrinsic flame retardant urea-formaldehyde foam with polyether amine: Structure and elastic deformation mechanism. Composites Part B: Engineering, 2019, 176, 107264.	5.9	13
26	Multiple shape memory behavior of highly oriented longâ€chainâ€branched poly(lactic acid) and its recovery mechanism. Journal of Biomedical Materials Research - Part A, 2019, 107, 872-883.	2.1	11
27	Structure and self-reinforcing mechanism of biaxially oriented polyethylene pipes produced by solid phase die drawing. Polymer, 2019, 178, 121556.	1.8	10
28	Construction of Dual Orientation Crystalline Structure in Poly(vinyl alcohol)/Graphene Oxide Nano-Composite Hydrogels and Reinforcing Mechanism. Industrial & Engineering Chemistry Research, 2019, 58, 10908-10921.	1.8	15
29	Microcellular polyetherimide/carbon nanotube composite foam: Structure, property and highly reinforcing mechanism. European Polymer Journal, 2019, 116, 488-496.	2.6	8
30	Construction of robust siloxane coating for urea-formaldehyde foam and durable hydrophobic mechanism. Composites Part A: Applied Science and Manufacturing, 2019, 122, 96-106.	3.8	10
31	Preparation of longâ€chain branched poly(ethylene terephthalate): Molecular entanglement structure and toughening mechanism. Polymer Engineering and Science, 2019, 59, 1190-1198.	1.5	17
32	Controlled in vitro degradation behavior of highly oriented longâ€chainâ€branched poly(lactic acid) produced by solidâ€phase die drawing. Journal of Biomedical Materials Research - Part A, 2019, 107, 1522-1531.	2.1	6
33	Intrinsic flameâ€retardant urea formaldehyde/graphene nanocomposite foam: Structure and reinforcing mechanism. Polymer Composites, 2019, 40, E811.	2.3	10
34	Intercalation structure and toughening mechanism of graphene/ureaâ€formaldehyde nanocomposites prepared via <i>in situ</i> polymerization. Polymer International, 2018, 67, 330-339.	1.6	13
35	Reactive toughening of urea–formaldehyde resin with poly(vinyl alcohol) by formation of interpenetrating networks. Polymer Engineering and Science, 2018, 58, 2031-2038.	1.5	5
36	In situ preparation of intrinsic flame retardant urea formaldehyde/aramid fiber composite foam: Structure, property and reinforcing mechanism. Composites Part A: Applied Science and Manufacturing, 2018, 115, 274-282.	3.8	18

3

#	Article	IF	CITATIONS
37	Controlled pH- and glucose-responsive drug release behavior of cationic chitosan based nano-composite hydrogels by using graphene oxide as drug nanocarrier. Journal of Industrial and Engineering Chemistry, 2017, 49, 36-45.	2.9	42
38	Structure evolution and orientation mechanism of long-chain-branched poly (lactic acid) in the process of solid die drawing. European Polymer Journal, 2017, 90, 54-65.	2.6	37
39	Structure and biocompatibility of highly oriented poly(lactic acid) film produced by biaxial solid hot stretching. Journal of Industrial and Engineering Chemistry, 2017, 52, 338-348.	2.9	25
40	Structure and biocompatibility improvement mechanism of highly oriented poly(lactic acid) produced by solid die drawing. European Polymer Journal, 2017, 97, 68-76.	2.6	11
41	In Situ Synthesis of Monomer Casting Nylon-6/Graphene-Polysiloxane Nanocomposites: Intercalation Structure, Synergistic Reinforcing, and Friction-Reducing Effect. ACS Applied Materials & Samp; Interfaces, 2017, 9, 33176-33190.	4.0	54
42	A Novel Elastic Urea–Melamine–Formaldehyde Foam: Structure and Properties. Industrial & Engineering Chemistry Research, 2016, 55, 8743-8750.	1.8	53
43	High orientation of long chain branched poly (lactic acid) with enhanced blood compatibility and bionic structure. Journal of Biomedical Materials Research - Part A, 2016, 104, 1082-1089.	2.1	18
44	Structure and properties of urea-formaldehyde resin/polyurethane blend prepared via in-situ polymerization. RSC Advances, 2015, 5, 53700-53707.	1.7	22
45	Structure and blood compatibility of highly oriented poly(l-lactic acid) chain extended by ethylene glycol diglycidyl ether. Polymer, 2015, 56, 523-534.	1.8	26
46	Synthesis of cationic chitosan hydrogel and its controlled glucose-responsive drug release behavior. Chemical Engineering Journal, 2015, 273, 92-100.	6.6	70
47	Synthesis of cationic chitosan hydrogel with long chain alkyl and its controlled glucose-responsive drug delivery behavior. RSC Advances, 2015, 5, 96230-96241.	1.7	31
48	Fibrillation of chain branched poly (lactic acid) with improved blood compatibility and bionic structure. Chemical Engineering Journal, 2015, 279, 767-776.	6.6	24
49	Preparation and drug release behavior of pH-responsive bovine serum albumin-loaded chitosan microspheres. Journal of Industrial and Engineering Chemistry, 2015, 21, 1389-1397.	2.9	82
50	Structure and blood compatibility of highly oriented PLA/MWNTs composites produced by solid hot drawing. Journal of Biomaterials Applications, 2014, 28, 978-989.	1.2	21
51	Mechanical and crystalline properties of monomer casting Nylonâ€6/Sio ₂ composites prepared via ⟨i⟩in situ polymerization. Polymer Engineering and Science, 2013, 53, 1809-1822.	1.5	32
52	Structure and blood compatibility of highly oriented poly(lactic acid)/thermoplastic polyurethane blends produced by solid hot stretching. Polymers for Advanced Technologies, 2013, 24, 853-860.	1.6	32
53	Effect of Heat Treatment on the Structure and Properties of MC Nylon 6. Polymer-Plastics Technology and Engineering, 2012, 51, 689-695.	1.9	22
54	Structure and properties of highly oriented polyoxymethylene/multi-walled carbon nanotube composites produced by hot stretching. Composites Science and Technology, 2011, 71, 1367-1372.	3.8	32

#	Article	lF	CITATIONS
55	Preparation, structure, and property of polyoxymethylene/carbon nanotubes thermal conducive composites. Journal of Polymer Science, Part B: Polymer Physics, 2010, 48, 905-912.	2.4	33
56	Synthesis of the melamine–formaldehyde polycondensate and its thermal stabilization effect on polyoxymethylene. Polymer, 2006, 47, 2649-2659.	1.8	30