Daniel Schertzer

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9541455/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Multifractal characterisation of overland flow of nature-based solutions scenarios. Hydrological Sciences Journal, 2022, 67, 1054-1064.	1.2	2
2	Scale invariant relationship between rainfall kinetic energy and intensity in Paris region: An evaluation using universal multifractal framework. Journal of Hydrology, 2022, 609, 127715.	2.3	2
3	Evaluation of the spatial variability of ecosystem services and natural capital: the urban land cover change impacts on carbon stocks. International Journal of Sustainable Development and World Ecology, 2021, 28, 339-349.	3.2	7
4	Space variability impacts on hydrological responses of nature-based solutions and the resulting uncertainty: a case study of Guyancourt (France). Hydrology and Earth System Sciences, 2021, 25, 3137-3162.	1.9	10
5	A new multifractal-based grain size distribution model. Geoderma, 2021, 404, 115294.	2.3	7
6	Assessing cost-effectiveness of nature-based solutions scenarios: Integrating hydrological impacts and life cycle costs. Journal of Cleaner Production, 2021, 329, 129740.	4.6	12
7	A New Fractal Approach to Account for Capillary and Adsorption Phenomena in the Water Retention and Transfer Properties of Unsaturated Soils. Water Resources Research, 2020, 56, e2020WR027808.	1.7	7
8	Approximate multifractal correlation and products of universal multifractal fields, with application to rainfall data. Nonlinear Processes in Geophysics, 2020, 27, 133-145.	0.6	2
9	Blunt extension of discrete universal multifractal cascades: development and application to downscaling. Hydrological Sciences Journal, 2020, 65, 1204-1220.	1.2	3
10	A Century of Turbulent Cascades and the Emergence of Multifractal Operators. Earth and Space Science, 2020, 7, e2019EA000608.	1.1	8
11	Rain gauge networks' limitations and the implications to hydrological modelling highlighted with a X-band radar. Journal of Hydrology, 2020, 583, 124615.	2.3	15
12	A Device for the Simultaneous Determination of the Water Retention Properties and the Hydraulic Conductivity Function of an Unsaturated Coarse Material; Application to a Green-Roof Volcanic Substrate. Geotechnical Testing Journal, 2020, 43, 547-564.	0.5	6
13	Measurements of the water balance components of a large green roof in the greater Paris area. Earth System Science Data, 2020, 12, 1025-1035.	3.7	9
14	Disdrometer measurements under Sense-City rainfall simulator. Earth System Science Data, 2020, 12, 835-845.	3.7	4
15	Small-Scale Rainfall Variability Impacts Analyzed by Fully-Distributed Model Using C-Band and X-Band Radar Data. Water (Switzerland), 2019, 11, 1273.	1.2	9
16	Climate risks, digital media, and big data: following communication trails to investigate urban communities' resilience. Natural Hazards and Earth System Sciences, 2019, 19, 1485-1498.	1.5	7
17	Climate resilience in Paris: A network representation of online strategic documents released by public authorities. Progress in Disaster Science, 2019, 3, 100040.	1.4	2
18	Assessing the impact of outreach strategies in cities coping with climate risks. Geoscience Communication, 2019, 2, 25-38.	0.5	2

DANIEL SCHERTZER

#	Article	IF	CITATIONS
19	Multifractal characterisation of a simulated surface flow: A case study with Multi-Hydro in Jouy-en-Josas, France. Journal of Hydrology, 2018, 558, 482-495.	2.3	12
20	Pandora Box of Multifractals: Barely Open?. , 2018, , 543-563.		2
21	Toward an assessment of the hydrological components variability in green infrastructures: Pilot site of the Green Wave (Champs-sur-Marne). Houille Blanche, 2018, 104, 34-42.	0.3	7
22	Multi-hydro hydrological modelling of a complex peri-urban catchment with storage basins comparing C-band and X-band radar rainfall data. Hydrological Sciences Journal, 2018, 63, 1619-1635.	1.2	13
23	Scale effect challenges in urban hydrology highlighted with a distributed hydrological model. Hydrology and Earth System Sciences, 2018, 22, 331-350.	1.9	39
24	Multifractal Comparison of Reflectivity and Polarimetric Rainfall Data from C- and X-Band Radars and Respective Hydrological Responses of a Complex Catchment Model. Water (Switzerland), 2018, 10, 269.	1.2	13
25	Two months of disdrometer data in the Paris area. Earth System Science Data, 2018, 10, 941-950.	3.7	12
26	Multifractal evaluation of simulated precipitation intensities from the COSMO NWP model. Atmospheric Chemistry and Physics, 2017, 17, 14253-14273.	1.9	6
27	Fractal analysis of urban catchments and their representation in semi-distributed models: imperviousness and sewer system. Hydrology and Earth System Sciences, 2017, 21, 2361-2375.	1.9	17
28	An Introduction to Multifractals and Scale Symmetry Groups. , 2017, , 1-28.		2
29	Making rainfall features fun: scientific activities for teaching children aged 5–12 years. Hydrology and Earth System Sciences, 2016, 20, 1751-1763.	1.9	3
30	Toward an operational tool to simulate green roof hydrological impact at the basin scale: a new version of the distributed rainfall–runoff model Multi-Hydro. Water Science and Technology, 2016, 74, 1845-1854.	1.2	20
31	Multifractal vector fields and stochastic Clifford algebra. Chaos, 2015, 25, 123127.	1.0	10
32	Impact of spatial and temporal resolution of rainfall inputs on urban hydrodynamic modelling outputs: A multi-catchment investigation. Journal of Hydrology, 2015, 531, 389-407.	2.3	206
33	2DVD Data Revisited: Multifractal Insights into Cuts of the Spatiotemporal Rainfall Process. Journal of Hydrometeorology, 2015, 16, 548-562.	0.7	15
34	Impacts of small scale rainfall variability in urban areas: a case study with 1D and 1D/2D hydrological models in a multifractal framework. Urban Water Journal, 2015, 12, 607-617.	1.0	33
35	Do GCMs predict the climate or macroweather?. Earth System Dynamics, 2013, 4, 439-454.	2.7	35
36	Development and analysis of a simple model to represent the zero rainfall in a universal multifractal framework. Nonlinear Processes in Geophysics, 2013, 20, 343-356.	0.6	35

DANIEL SCHERTZER

#	Article	IF	CITATIONS
37	MULTIFRACTALS, GENERALIZED SCALE INVARIANCE AND COMPLEXITY IN GEOPHYSICS. International Journal of Bifurcation and Chaos in Applied Sciences and Engineering, 2011, 21, 3417-3456.	0.7	81
38	Multifractal analysis of the evolution of simulated precipitation over France in a climate scenario. Comptes Rendus - Geoscience, 2008, 340, 431-440.	0.4	46
39	Méthodes multifractales appliquées à la prévision de pluie en utilisant des données radar. Houille Blanche, 2007, 93, 92-98.	0.3	12
40	Space–time complexity and multifractal predictability. Physica A: Statistical Mechanics and Its Applications, 2004, 338, 173-186.	1.2	23
41	Multifractal analysis and modeling of rainfall and river flows and scaling, causal transfer functions. Journal of Geophysical Research, 1996, 101, 26427-26440.	3.3	263
42	Causal space-time multifractal processes: Predictability and forecasting of rain fields. Journal of Geophysical Research, 1996, 101, 26333-26346.	3.3	137
43	Multifractal analysis of the Greenland Ice ore Project climate data. Geophysical Research Letters, 1995, 22, 1689-1692.	1.5	79
44	Fractals, Raindrops and Resolution Dependence of Rain Measurements. Journal of Applied Meteorology and Climatology, 1990, 29, 1167-1170.	1.7	57
45	Multifractals, universality classes and satellite and radar measurements of cloud and rain fields. Journal of Geophysical Research, 1990, 95, 2021-2034.	3.3	220
46	Physical modeling and analysis of rain and clouds by anisotropic scaling multiplicative processes. Journal of Geophysical Research, 1987, 92, 9693-9714.	3.3	942
47	Infilling missing data of binary geophysical fields using scale invariant properties through an application to imperviousness in urban areas. Hydrological Sciences Journal, 0, , 1-14.	1.2	3
48	Caractéristiques multifractales et extrêmes de la précipitation à haute résolution, application à la détection du changement climatique. Revue Des Sciences De L'Eau, 0, 27, 205-216.	0.2	5