Francisco Jimenez Espadafor

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9541213/publications.pdf

Version: 2024-02-01

471371 501076 45 875 17 28 citations h-index g-index papers 45 45 45 888 docs citations times ranked citing authors all docs

#	Article	IF	Citations
1	Prediction of hydrogen-heavy fuel combustion process with water addition in an adapted low speed two stroke diesel engine: Performance improvement. Applied Thermal Engineering, 2021, 195, 117250.	3.0	17
2	Torsional system dynamics of low speed diesel engines based on instantaneous torque: Application to engine diagnosis. Mechanical Systems and Signal Processing, 2019, 116, 858-878.	4.4	30
3	Analysis of the effect of the hydrogen as main fuel on the performance of a modified compression ignition engine with water injection. Energy, 2019, 173, 911-925.	4.5	14
4	Failure analysis of an overhead valve train system in urban buses. Engineering Failure Analysis, 2019, 96, 455-467.	1.8	7
5	Experimental analysis of NOx reduction through water addition and comparison with exhaust gas recycling. Energy, 2019, 168, 737-752.	4.5	34
6	Analysis of the effect of different hydrogen/diesel ratios on the performance and emissions of a modified compression ignition engine under dual-fuel mode with water injection. Hydrogen-diesel dual-fuel mode. Energy, 2019, 172, 702-711.	4.5	25
7	Low power static-heating start-up procedure for supercritical water oxidation plants. Journal of Supercritical Fluids, 2018, 135, 218-224.	1.6	4
8	Simulation of supercritical water oxidation reactor in transitory state: Application to time-dependent processes. Journal of Supercritical Fluids, 2016, 117, 219-229.	1.6	10
9	Indirect characterisation of indicated power in Stirling engines through brake power measurements. Applied Thermal Engineering, 2016, 100, 961-971.	3.0	5
10	Fully optimized energy management for propulsion, thermal cooling and auxiliaries of a serial hybrid electric vehicle. Applied Thermal Engineering, 2015, 91, 694-705.	3.0	17
11	Numerical study of HCCI combustion fueled with diesel oil using a multizone model approach. Energy Conversion and Management, 2015, 89, 885-895.	4.4	16
12	Measurement and analysis of instantaneous torque and angular velocity variations of a low speed two stroke diesel engine. Mechanical Systems and Signal Processing, 2014, 49, 135-153.	4.4	23
13	Analysis of regulation methods of a combined heat and power plant based on gas turbines. Energy, 2014, 72, 574-589.	4.5	15
14	SPHERA project: Assessing the use of syngas fuels in gas turbines and combined cycles from a global perspective. Fuel Processing Technology, 2012, 103, 134-145.	3.7	20
15	Experimental analysis of low temperature combustion mode with diesel and biodiesel fuels: A method for reducing NOx and soot emissions. Fuel Processing Technology, 2012, 103, 57-63.	3.7	66
16	Methodology for the estimation of head inner surface temperature in an air-cooled engine. Applied Thermal Engineering, 2012, 35, 202-211.	3.0	2
17	Supercritical Water Oxidation of Oily Wastes at Pilot Plant: Simulation for Energy Recovery. Industrial & Damp; Engineering Chemistry Research, 2011, 50, 775-784.	1.8	36
18	A methodology for cracks identification in large crankshafts. Mechanical Systems and Signal Processing, 2011, 25, 3168-3185.	4.4	23

#	Article	IF	CITATIONS
19	Infantry mobility hybrid electric vehicle performance analysis and design. Applied Energy, 2011, 88, 2641-2652.	5.1	16
20	Failure analysis of reciprocating compressor crankshafts. Engineering Failure Analysis, 2011, 18, 735-746.	1.8	38
21	Analysis of a new analytical law of heat release rate (HRR) for homogenous charge compression ignition (HCCI) combustion mode versus analytical parameters. Applied Thermal Engineering, 2011, 31, 458-466.	3.0	13
22	Prediction of performance, energy savings and increase in profitability of two gas turbine steam generator cogeneration plant, based on experimental data. Energy, 2011, 36, 742-754.	4.5	21
23	Experimental and dynamic system simulation and optimization of a centrifugal pump-coupling-engine system. Part 1: Failure identification. Engineering Failure Analysis, 2011, 18, 1-11.	1.8	2
24	Analysis of a diesel generator cylinder failure. Engineering Failure Analysis, 2010, 17, 913-925.	1.8	12
25	Experimental and dynamic system simulation and optimization of a centrifugal pump-coupling-engine system. Part 2: System design. Engineering Failure Analysis, 2010, 17, 1551-1559.	1.8	1
26	Fast on-line identification of instantaneous mechanical losses in internal combustion engines. Mechanical Systems and Signal Processing, 2010, 24, 267-280.	4.4	7
27	Influence of a Combustion Parametric Model on the Cyclic Angular Speed of Internal Combustion Engines. Part II: Statistical Sensitivity Assessment Results. Energy & Engines. Part II: Statistical Sensitivity Assessment Results. Energy & E	2.5	2
28	Correcting injection pressure maladjustments to reduce NOX emissions by marine diesel engines. Transportation Research, Part D: Transport and Environment, 2009, 14, 61-66.	3.2	16
29	The viability of pure vegetable oil as an alternative fuel for large ships. Transportation Research, Part D: Transport and Environment, 2009, 14, 461-469.	3.2	39
30	Feasibility analysis of a MED desalination plant in a combined cycle based cogeneration facility. Applied Thermal Engineering, 2009, 29, 412-417.	3.0	38
31	Analysis of a diesel generator crankshaft failure. Engineering Failure Analysis, 2009, 16, 2333-2341.	1.8	67
32	Practical identification of non-linear characteristics of elastomeric couplings in engine assemblies. Mechanical Systems and Signal Processing, 2009, 23, 922-930.	4.4	4
33	A new heat release rate (HRR) law for homogeneous charge compression ignition (HCCI) combustion mode. Applied Thermal Engineering, 2009, 29, 3654-3662.	3.0	32
34	Experimental study of the performances of a modified diesel engine operating in homogeneous charge compression ignition (HCCI) combustion mode versus the original diesel combustion mode. Energy, 2009, 34, 159-171.	4.5	51
35	Effect of Turbulence and External Exhaust Gas Recirculation on HCCI Combustion Mode and Exhaust Emissions. Energy & Emissions.	2.5	19
36	Predictive Modeling of a Homogeneous Charge Compression Ignition (HCCI) Engine with EGR Fueled with Diesel. Energy & Samp; Fuels, 2009, 23, 5383-5393.	2.5	3

#	Article	IF	CITATIONS
37	Combustion Characteristics, Emissions and Heat Release Rate Analysis of a Homogeneous Charge Compression Ignition Engine with Exhaust Gas Recirculation Fuelled with Diesel. Energy & E	2.5	8
38	Influence of a Combustion Parametric Model on the Cyclic Angular Speed of Internal Combustion Engines. Part I: Setup for Sensitivity Analysis. Energy & Engines. Part I: Setup for Sensitivity Analysis. Energy &	2.5	4
39	Analysis of combustion turbine inlet air cooling systems applied to an operating cogeneration power plant. Energy Conversion and Management, 2008, 49, 2130-2141.	4.4	60
40	Combustion Faults Diagnosis in Internal Combustion Engines Using Angular Speed Measurements and Artificial Neural Networks. Energy & Energy & 2008, 22, 2972-2980.	2.5	14
41	Analysis of the Start of Combustion of a Diesel Fuel in a HCCI Process through an Integral Chemical Kinetic Model and Experimentation. Energy & Energy & 2008, 22, 987-995.	2.5	8
42	A Genetic Algorithm for Determining Cylinder Pressure in Internal Combustion Engines. Energy & Energy & Fuels, 2007, 21, 2600-2607.	2.5	14
43	Computer Model to Simulate the Injection Process in a Rotary Injection Pump:Â The Inverse Problem. Energy & Fuels, 2007, 21, 110-120.	2.5	5
44	Design and Optimization of Neural Networks To Estimate the Chamber Pressure in Internal Combustion Engines by an Indirect Method. Energy & Energy & 21, 2627-2636.	2.5	11
45	Development of a Computer Model to Simulate the Injection Process of a Diesel Engine. Energy & Samp; Fuels, 2005, 19, 1526-1535.	2.5	6