Blair Crewther

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9541186/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A wearable multisensing patch for continuous sweat monitoring. Biosensors and Bioelectronics, 2017, 93, 139-145.	5.3	311
2	Digit Ratio (2D:4D): A Biomarker for Prenatal Sex Steroids and Adult Sex Steroids in Challenge Situations. Frontiers in Endocrinology, 2014, 5, 9.	1.5	185
3	Possible Stimuli for Strength and Power Adaptation. Sports Medicine, 2005, 35, 967-989.	3.1	156
4	Possible Stimuli for Strength and Power Adaptation. Sports Medicine, 2006, 36, 215-238.	3.1	142
5	Two Emerging Concepts for Elite Athletes. Sports Medicine, 2011, 41, 103-123.	3.1	142
6	Relationships Between Force–Time Characteristics of the Isometric Midthigh Pull and Dynamic Performance in Professional Rugby League Players. Journal of Strength and Conditioning Research, 2011, 25, 3070-3075.	1.0	129
7	The Acute Potentiating Effects of Back Squats on Athlete Performance. Journal of Strength and Conditioning Research, 2011, 25, 3319-3325.	1.0	95
8	Quantifying positional and temporal movement patterns in professional rugby union using global positioning system. European Journal of Sport Science, 2015, 15, 488-496.	1.4	94
9	Validating Two Systems for Estimating Force and Power. International Journal of Sports Medicine, 2011, 32, 254-258.	0.8	81
10	Morning based strength training improves afternoon physical performance in rugby union players. Journal of Science and Medicine in Sport, 2014, 17, 317-321.	0.6	76
11	Monitoring Training Load, Recovery-Stress State, Immune-Endocrine Responses, and Physical Performance in Elite Female Basketball Players During a Periodized Training Program. Journal of Strength and Conditioning Research, 2014, 28, 2973-2980.	1.0	76
12	Neuromuscular Performance of Elite Rugby Union Players and Relationships With Salivary Hormones. Journal of Strength and Conditioning Research, 2009, 23, 2046-2053.	1.0	74
13	The Salivary Testosterone and Cortisol Response to Three Loading Schemes. Journal of Strength and Conditioning Research, 2008, 22, 250-255.	1.0	72
14	The effects of different pre-game motivational interventions on athlete free hormonal state and subsequent performance in professional rugby union matches. Physiology and Behavior, 2012, 106, 683-688.	1.0	64
15	Changes in salivary testosterone concentrations and subsequent voluntary squat performance following the presentation of short video clips. Hormones and Behavior, 2012, 61, 17-22.	1.0	61
16	Effect of Competition on Salivary Cortisol, Immunoglobulin A, and Upper Respiratory Tract Infections in Elite Young Soccer Players. Journal of Strength and Conditioning Research, 2012, 26, 1396-1401.	1.0	60
17	Skill execution and sleep deprivation: effects of acute caffeine or creatine supplementation - a randomized placebo-controlled trial. Journal of the International Society of Sports Nutrition, 2011, 8, 2.	1.7	58
18	Neuromuscular Function, Hormonal, and Mood Responses to a Professional Rugby Union Match. Journal of Strength and Conditioning Research, 2014, 28, 194-200.	1.0	57

#	Article	IF	CITATIONS
19	Influence of post-warm-up recovery time on swim performance in international swimmers. Journal of Science and Medicine in Sport, 2013, 16, 172-176.	0.6	55
20	Possible Stimuli for Strength and Power Adaptation. Sports Medicine, 2006, 36, 65-78.	3.1	52
21	Gravitational forces and whole body vibration: implications for prescription of vibratory stimulation. Physical Therapy in Sport, 2004, 5, 37-43.	0.8	50
22	Effects of Resisted Sprint Training on Acceleration in Professional Rugby Union Players. Journal of Strength and Conditioning Research, 2013, 27, 1014-1018.	1.0	50
23	Influence of competition playing venue on the hormonal responses, state anxiety and perception of effort in elite basketball athletes. Physiology and Behavior, 2014, 130, 1-5.	1.0	47
24	Digit Ratio (2D:4D), Aggression, and Testosterone in Men Exposed to an Aggressive Video Stimulus. Evolutionary Psychology, 2013, 11, 953-964.	0.6	46
25	Baseline Strength Can Influence the Ability of Salivary Free Testosterone to Predict Squat and Sprinting Performance. Journal of Strength and Conditioning Research, 2012, 26, 261-268.	1.0	44
26	The Effects of Training Volume and Competition on the Salivary Cortisol Concentrations of Olympic Weightlifters. Journal of Strength and Conditioning Research, 2011, 25, 10-15.	1.0	43
27	Influence of Ballistic Bench Press on Upper Body Power Output in Professional Rugby Players. Journal of Strength and Conditioning Research, 2013, 27, 2282-2287.	1.0	42
28	Digit ratio (2D:4D) and salivary testosterone, oestradiol and cortisol levels under challenge: Evidence for prenatal effects on adult endocrine responses. Early Human Development, 2015, 91, 451-456.	0.8	42
29	Right–left digit ratio (2D:4D) predicts free testosterone levels associated with a physical challenge. Journal of Sports Sciences, 2013, 31, 677-683.	1.0	41
30	A comparison of ratio and allometric scaling methods for normalizing power and strength in elite rugby union players. Journal of Sports Sciences, 2009, 27, 1575-1580.	1.0	36
31	Basal and stressâ€induced salivary testosterone variation across the menstrual cycle and linkage to motivation and muscle power. Scandinavian Journal of Medicine and Science in Sports, 2018, 28, 1345-1353.	1.3	35
32	Relationship Between Pregame Concentrations of Free Testosterone and Outcome in Rugby Union. International Journal of Sports Physiology and Performance, 2014, 9, 324-331.	1.1	34
33	Comparison of baseline free testosterone and cortisol concentrations between elite and nonâ€elite female athletes. American Journal of Human Biology, 2012, 24, 856-858.	0.8	32
34	The Ratio and Allometric Scaling of Speed, Power, and Strength in Elite Male Rugby Union Players. Journal of Strength and Conditioning Research, 2011, 25, 1968-1975.	1.0	31
35	Temporal associations between individual changes in hormones, training motivation and physical performance in elite and non-elite trained men. Biology of Sport, 2016, 33, 215-221.	1.7	31
36	Skill acquisition and stress adaptations following laparoscopic surgery training and detraining in novice surgeons. Surgical Endoscopy and Other Interventional Techniques, 2016, 30, 2961-2968.	1.3	30

#	Article	IF	CITATIONS
37	Hormonal Responses to Different Resistance Exercise Schemes of Similar Total Volume. Journal of Strength and Conditioning Research, 2009, 23, 2003-2008.	1.0	29
38	Health and Fitness Benefits of a Resistance Training Intervention Performed in the Workplace. Journal of Strength and Conditioning Research, 2012, 26, 811-817.	1.0	29
39	The Workout Responses of Salivary-Free Testosterone and Cortisol Concentrations and Their Association With the Subsequent Competition Outcomes in Professional Rugby League. Journal of Strength and Conditioning Research, 2013, 27, 471-476.	1.0	29
40	Training volume and strength and power development. Journal of Science and Medicine in Sport, 2004, 7, 144-155.	0.6	26
41	Effects of oral contraceptive use on the salivary testosterone and cortisol responses to training sessions and competitions in elite women athletes. Physiology and Behavior, 2015, 147, 84-90.	1.0	26
42	Salivary Hormone and Immune Responses to Three Resistance Exercise Schemes in Elite Female Athletes. Journal of Strength and Conditioning Research, 2011, 25, 2322-2327.	1.0	24
43	The Effects of Short-Cycle Sprints on Power, Strength, and Salivary Hormones in Elite Rugby Players. Journal of Strength and Conditioning Research, 2011, 25, 32-39.	1.0	23
44	A longitudinal analysis of salivary testosterone concentrations and competitiveness in elite and non-elite women athletes. Physiology and Behavior, 2018, 188, 157-161.	1.0	23
45	Neuromuscular, physiological and endocrine responses to a maximal speed training session in elite games players. European Journal of Sport Science, 2015, 15, 550-556.	1.4	22
46	Measuring Recovery in Elite Rugby Players: The Brief Assessment of Mood, Endocrine Changes, and Power. Research Quarterly for Exercise and Sport, 2015, 86, 379-386.	0.8	22
47	Effects of different post-match recovery interventions on subsequent athlete hormonal state and game performance. Physiology and Behavior, 2012, 106, 471-475.	1.0	21
48	Validating the salivary testosterone and cortisol concentration measures in response to short high-intensity exercise. Journal of Sports Medicine and Physical Fitness, 2010, 50, 85-92.	0.4	21
49	Is salivary cortisol moderating the relationship between salivary testosterone and handâ€grip strength in healthy men?. European Journal of Sport Science, 2017, 17, 188-194.	1.4	20
50	Physiological and Performance Effects of Caffeine Gum Consumed During a Simulated Half-Time by Professional Academy Rugby Union Players. Journal of Strength and Conditioning Research, 2020, 34, 145-151.	1.0	20
51	Are free testosterone and cortisol concentrations associated with training motivation in elite male athletes?. Psychology of Sport and Exercise, 2013, 14, 882-885.	1.1	19
52	The Contribution of Volume, Technique, and Load to Single-Repetition and Total-Repetition Kinematics and Kinetics in Response to Three Loading Schemes. Journal of Strength and Conditioning Research, 2008, 22, 1908-1915.	1.0	15
53	Monitoring salivary testosterone and cortisol concentrations across an international sports competition: Data comparison using two enzyme immunoassays and two sample preparations. Clinical Biochemistry, 2013, 46, 354-358.	0.8	14
54	The digit ratio (2D:4D) relationship with testosterone is moderated by physical training: Evidence of prenatal organizational influences on activational patterns of adult testosterone in physically-active women. Early Human Development, 2019, 131, 51-55.	0.8	14

#	Article	IF	CITATIONS
55	Three DNA Polymorphisms Previously Identified as Markers for Handgrip Strength Are Associated With Strength in Weightlifters and Muscle Fiber Hypertrophy. Journal of Strength and Conditioning Research, 2019, 33, 2602-2607.	1.0	14
56	Digit ratio (2D:4D), aggression, and testosterone in men exposed to an aggressive video stimulus. Evolutionary Psychology, 2013, 11, 953-64.	0.6	14
57	Prior sprint cycling did not enhance training adaptation, but resting salivary hormones were related to workout power and strength. European Journal of Applied Physiology, 2009, 105, 919-927.	1.2	13
58	Serum cortisol as a moderator of the relationship between serum testosterone and Olympic weightlifting performance in real and simulated competitions. Biology of Sport, 2018, 35, 215-221.	1.7	13
59	The impact of a competitive learning environment on hormonal and emotional stress responses and skill acquisition and expression in a medical student domain. Physiology and Behavior, 2019, 199, 252-257.	1.0	13
60	Measuring the Salivary Testosterone and Cortisol Concentrations of Weightlifters Using an Enzyme-Immunoassay Kit. International Journal of Sports Medicine, 2010, 31, 486-489.	0.8	12
61	Can salivary testosterone and cortisol reactivity to a mid-week stress test discriminate a match outcome during international rugby union competition?. Journal of Science and Medicine in Sport, 2018, 21, 312-316.	0.6	12
62	The Metabolic, Hormonal, Biochemical, and Neuromuscular Function Responses to a Backward Sled Drag Training Session. Journal of Strength and Conditioning Research, 2014, 28, 265-272.	1.0	10
63	Salivary testosterone responses to a physical and psychological stimulus and subsequent effects on physical performance in healthy adults. Hormones, 2016, 15, 248-255.	0.9	10
64	The Effect of Steroid Hormones on the Physical Performance of Boys and Girls During an Olympic Weightlifting Competition. Pediatric Exercise Science, 2016, 28, 580-587.	0.5	10
65	Trained and untrained males show reliable salivary testosterone responses to a physical stimulus, but not a psychological stimulus. Journal of Endocrinological Investigation, 2014, 37, 1065-1072.	1.8	9
66	The effect of oral contraceptive use on salivary testosterone concentrations and athlete performance during international field hockey matches. Journal of Science and Medicine in Sport, 2018, 21, 453-456.	0.6	9
67	The social environment during a post-match video presentation affects the hormonal responses and playing performance in professional male athletes. Physiology and Behavior, 2014, 130, 170-175.	1.0	8
68	The effects of two equal-volume training protocols upon strength, body composition and salivary hormones in male rugby union players. Biology of Sport, 2016, 33, 111-116.	1.7	8
69	Short-Term d-Aspartic Acid Supplementation Does Not Affect Serum Biomarkers Associated With the Hypothalamic–Pituitary–Gonadal Axis in Male Climbers. International Journal of Sport Nutrition and Exercise Metabolism, 2019, 29, 259-264.	1.0	8
70	A longitudinal investigation of bidirectional and time-dependent interrelationships between testosterone and training motivation in an elite rugby environment. Hormones and Behavior, 2020, 126, 104866.	1.0	8
71	Menstrual variation in the acute testosterone and cortisol response to laboratory stressors correlate with baseline testosterone fluctuations at a within- and between-person level. Stress, 2021, 24, 1-10.	0.8	8
72	Within- and between-person variation in morning testosterone is associated with economic risk-related decisions in athletic women across the menstrual cycle. Hormones and Behavior, 2019, 112, 77-80.	1.0	7

#	Article	IF	CITATIONS
73	Testosterone and Dihydrotestosterone Changes in Male and Female Athletes Relative to Training Status. International Journal of Sports Physiology and Performance, 2021, 16, 1700-1706.	1.1	7
74	Vitamin D and Cortisol as Moderators of the Relationship Between Testosterone and Exercise Performance in Adolescent Male Athletes. Pediatric Exercise Science, 2020, 32, 204-209.	0.5	7
75	The utility of salivary testosterone and cortisol concentration measures for assessing the stress responses of junior athletes during a sporting competition. Journal of Clinical Laboratory Analysis, 2018, 32, .	0.9	6
76	Digit ratio (2D:4D) and testosterone supplementation. Early Human Development, 2019, 139, 104843.	0.8	6
77	Relationships between salivary testosterone and cortisol concentrations and training performance in Olympic weightlifters. Journal of Sports Medicine and Physical Fitness, 2010, 50, 371-5.	0.4	6
78	The effects of a resistance-training program on strength, body composition and baseline hormones in male athletes training concurrently for rugby union 7's. Journal of Sports Medicine and Physical Fitness, 2013, 53, 34-41.	0.4	6
79	Profiling visual and verbal stress responses using electrodermal heart rate and hormonal measures. , 2013, , .		5
80	Performance indicators during international rugby union matches are influenced by a combination of physiological and contextual variables. Journal of Science and Medicine in Sport, 2020, 23, 396-402.	0.6	5
81	Diurnal Within-Person Coupling Between Testosterone and Cortisol in Healthy Men: Evidence of Positive and Bidirectional Time-Lagged Associations Using a Continuous-Time Model. Adaptive Human Behavior and Physiology, 2021, 7, 89-104.	0.6	5
82	Impact of one HF-rTMS session over the DLPFC and motor cortex on acute hormone dynamics and emotional state in healthy adults: a sham-controlled pilot study. Neurological Sciences, 2022, 43, 651-659.	0.9	5
83	Relationship between match statistics, game outcome and pre-match hormonal state in professional rugby union. International Journal of Performance Analysis in Sport, 2013, 13, 522-534.	0.5	4
84	Medical students preferring a surgical or non-surgical elective differ in their emotional and hormonal responses to a psychological stressor. American Journal of Surgery, 2020, 219, 604-607.	0.9	4
85	Relationships between salivary free testosterone and the expression of force and power in elite athletes. Journal of Sports Medicine and Physical Fitness, 2012, 52, 221-7.	0.4	4
86	The salivary testosterone response to a chance-determined contest is associated with face-gazing behaviours in athletic women. Hormones and Behavior, 2018, 103, 107-110.	1.0	3
87	Individual variation in the cortisol response to a simulated Olympic weightlifting competition is related to changes in future competitive performance. Biology of Sport, 2019, 36, 133-139.	1.7	3
88	The impact of menstrual-cycle phase on basal and exercise-induced hormones, mood, anxiety and exercise performance in physically active women. Journal of Sports Medicine and Physical Fitness, 2021, 61, 461-467.	0.4	3
89	Modest Exercise-Induced Increases in Testosterone Concentration Are Not Associated with Mating Strategy Change in Healthy Young Men. Evolutionary Psychological Science, 2021, 7, 298-303.	0.8	3
90	Validity of two kinematic systems for calculating force and power during squat jumps. British Journal of Sports Medicine, 2010, 44, i26-i26.	3.1	3

#	Article	IF	CITATIONS
91	The digit ratio (2D:4D) and testosterone co-predict vertical jump performance in athletic boys: Evidence of organizational and activational effects of testosterone on physical fitness. Physiology and Behavior, 2022, 251, 113816.	1.0	2
92	Measuring the Salivary Testosterone and Cortisol Concentrations of Weightlifters Using an Enzyme-Immunoassay Kit. International Journal of Sports Medicine, 2010, 31, 489-489.	0.8	0
93	Contemporaneous and temporal interrelationships between menstrual fluctuations in sex hormones and DXA estimates of body composition in a premenopausal female: a case study. Journal of Sports Medicine and Physical Fitness, 2021, 61, 1423-1428.	0.4	0
94	Effects of training and competition on the salivary cortisol concentrations of weightlifters. British Journal of Sports Medicine, 2010, 44, i22-i22.	3.1	0