John C Grundy

List of Publications by Citations

Source: https://exaly.com/author-pdf/9540574/john-c-grundy-publications-by-citations.pdf

Version: 2024-04-28

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

351 papers

3,627 citations

28 h-index

43 g-index

436 ext. papers

5,011 ext. citations

2.3 avg, IF

6.09 L-index

#	Paper	IF	Citations
351	Empirical Studies of Pair Programming for CS/SE Teaching in Higher Education: A Systematic Literature Review. <i>IEEE Transactions on Software Engineering</i> , 2011 , 37, 509-525	3.5	177
350	Optimal Edge User Allocation in Edge Computing with Variable Sized Vector Bin Packing. <i>Lecture Notes in Computer Science</i> , 2018 , 230-245	0.9	90
349	Systematic literature reviews in agile software development: A tertiary study. <i>Information and Software Technology</i> , 2017 , 85, 60-70	3.4	77
348	Inconsistency management for multiple-view software development environments. <i>IEEE Transactions on Software Engineering</i> , 1998 , 24, 960-981	3.5	76
347	A systematic mapping study of mobile application testing techniques. <i>Journal of Systems and Software</i> , 2016 , 117, 334-356	3.3	71
346	The Rise and Evolution of Agile Software Development. <i>IEEE Software</i> , 2018 , 35, 58-63	1.5	70
345	Collaboration-Based Cloud Computing Security Management Framework 2011 ,		68
344	A generic approach to supporting diagram differencing and merging for collaborative design 2005,		66
343	Cost-Effective App Data Distribution in Edge Computing. <i>IEEE Transactions on Parallel and Distributed Systems</i> , 2021 , 32, 31-44	3.7	61
342	An empirical study of the effects of personality in pair programming using the five-factor model 2009 ,		58
341	Online Collaborative Data Caching in Edge Computing. <i>IEEE Transactions on Parallel and Distributed Systems</i> , 2021 , 32, 281-294	3.7	56
340	CloudSec: A security monitoring appliance for Virtual Machines in the IaaS cloud model 2011,		43
339	Automatic Feature Learning for Predicting Vulnerable Software Components. <i>IEEE Transactions on Software Engineering</i> , 2021 , 47, 67-85	3.5	43
338	QoS-Driven Service Selection for Multi-tenant SaaS 2012 ,		40
337	Neural Network-based Detection of Self-Admitted Technical Debt. <i>ACM Transactions on Software Engineering and Methodology</i> , 2019 , 28, 1-45	3.3	36
336	Investigating the effects of personality traits on pair programming in a higher education setting through a family of experiments. <i>Empirical Software Engineering</i> , 2014 , 19, 714-752	3.3	36
335	Keyword Search for Building Service-Based Systems. <i>IEEE Transactions on Software Engineering</i> , 2017 , 43, 658-674	3.5	36

334	Realistic load testing of Web applications 2006 ,		35
333	Edge User Allocation with Dynamic Quality of Service. <i>Lecture Notes in Computer Science</i> , 2019 , 86-101	0.9	34
332	The effect of software engineers[personality traits on team climate and performance: A Systematic Literature Review. <i>Information and Software Technology</i> , 2016 , 73, 52-65	3.4	33
331	Emotion-oriented requirements engineering: A case study in developing a smart home system for the elderly. <i>Journal of Systems and Software</i> , 2019 , 147, 215-229	3.3	33
330	Improving requirements quality using essential use case interaction patterns 2011,		33
329	MULTI-PERSPECTIVE SPECIFICATION, DESIGN AND IMPLEMENTATION OF SOFTWARE COMPONENTS USING ASPECTS. International Journal of Software Engineering and Knowledge Engineering, 2000 , 10, 713-734	1	33
328	NetPay: An off-line, decentralized micro-payment system for thin-client applications. <i>Electronic Commerce Research and Applications</i> , 2007 , 6, 91-101	4.6	32
327	Adaptable, model-driven security engineering for SaaS cloud-based applications. <i>Automated Software Engineering</i> , 2014 , 21, 187-224	1.5	31
326	Aspect-oriented requirements engineering for component-based software systems		31
325	Lessons Learned from Using a Deep Tree-Based Model for Software Defect Prediction in Practice 2019 ,		30
324	. IEEE Transactions on Software Engineering, 2020 , 1-1	3.5	30
323	Metric selection and anomaly detection for cloud operations using log and metric correlation analysis. <i>Journal of Systems and Software</i> , 2018 , 137, 531-549	3.3	28
322	An empirical study of the effects of conscientiousness in pair programming using the five-factor personality model 2010 ,		28
321	Collaborative Software Engineering: Challenges and Prospects 2010 , 389-403		28
320	Experience report: Anomaly detection of cloud application operations using log and cloud metric correlation analysis 2015 ,		27
319	Defining Smart Contract Defects on Ethereum. IEEE Transactions on Software Engineering, 2020, 1-1	3.5	26
318	Dimensions and Metrics for Evaluating Recommendation Systems 2014 , 245-273		26
317	Serendipity: Integrated Environment Support for Process Modelling, Enactment and Work Coordination. <i>Automated Software Engineering</i> , 1998 , 5, 27-60	1.5	25

316	A decentralized architecture for software process modeling and enactment. <i>IEEE Internet Computing</i> , 1998 , 2, 53-62	2.4	25
315	KBRE: a framework for knowledge-based requirements engineering. <i>Software Quality Journal</i> , 2014 , 22, 87-119	1.2	24
314	Marama 2008 ,		24
313	Supporting Generic Sketching-Based Input of Diagrams in a Domain-Specific Visual Language Meta-Tool. <i>Proceedings - International Conference on Software Engineering</i> , 2007 ,		24
312	Experimental analysis of task-based energy consumption in cloud computing systems 2013,		23
311	An energy consumption model and analysis tool for Cloud computing environments 2012,		23
310	Performance engineering of service compositions 2006,		23
309	Developing adaptable user interfaces for component-based systems. <i>Interacting With Computers</i> , 2002 , 14, 175-194	1.6	23
308	A 3D metaphor for software production visualization		23
307	Graph-Based Optimal Data Caching in Edge Computing. <i>Lecture Notes in Computer Science</i> , 2019 , 477-	49& .9	23
307 306	Graph-Based Optimal Data Caching in Edge Computing. <i>Lecture Notes in Computer Science</i> , 2019 , 477-4 Cost-Effective App User Allocation in an Edge Computing Environment. <i>IEEE Transactions on Cloud Computing</i> , 2020 , 1-1	3·3	23
	Cost-Effective App User Allocation in an Edge Computing Environment. <i>IEEE Transactions on Cloud</i>		
306	Cost-Effective App User Allocation in an Edge Computing Environment. <i>IEEE Transactions on Cloud Computing</i> , 2020 , 1-1		22
306	Cost-Effective App User Allocation in an Edge Computing Environment. <i>IEEE Transactions on Cloud Computing</i> , 2020 , 1-1 Information visualisation utilising 3D computer game engines case study 2005 , Generating Domain-Specific Visual Language Tools from Abstract Visual Specifications. <i>IEEE</i>	3-3	22
306 305 304	Cost-Effective App User Allocation in an Edge Computing Environment. <i>IEEE Transactions on Cloud Computing</i> , 2020 , 1-1 Information visualisation utilising 3D computer game engines case study 2005 , Generating Domain-Specific Visual Language Tools from Abstract Visual Specifications. <i>IEEE Transactions on Software Engineering</i> , 2013 , 39, 487-515 Pounamu: A meta-tool for exploratory domain-specific visual language tool development. <i>Journal</i>	3.3	22 20 19
306 305 304 303	Cost-Effective App User Allocation in an Edge Computing Environment. <i>IEEE Transactions on Cloud Computing</i> , 2020 , 1-1 Information visualisation utilising 3D computer game engines case study 2005 , Generating Domain-Specific Visual Language Tools from Abstract Visual Specifications. <i>IEEE Transactions on Software Engineering</i> , 2013 , 39, 487-515 Pounamu: A meta-tool for exploratory domain-specific visual language tool development. <i>Journal of Systems and Software</i> , 2007 , 80, 1390-1407 Constructing component-based software engineering environments: issues and experiences.	3·3 3·5 3·3	22 20 19
306 305 304 303 302	Cost-Effective App User Allocation in an Edge Computing Environment. <i>IEEE Transactions on Cloud Computing</i> , 2020 , 1-1 Information visualisation utilising 3D computer game engines case study 2005 , Generating Domain-Specific Visual Language Tools from Abstract Visual Specifications. <i>IEEE Transactions on Software Engineering</i> , 2013 , 39, 487-515 Pounamu: A meta-tool for exploratory domain-specific visual language tool development. <i>Journal of Systems and Software</i> , 2007 , 80, 1390-1407 Constructing component-based software engineering environments: issues and experiences. <i>Information and Software Technology</i> , 2000 , 42, 103-114 Checking Smart Contracts with Structural Code Embedding. <i>IEEE Transactions on Software</i>	3·3 3·5 3·4	22 20 19 19

298	The effects of neuroticism on pair programming 2010 ,		18	
297	Ink features for diagram recognition 2007,		18	
296	An e-whiteboard application to support early design-stage sketching of UML diagrams		18	
295	Diversified Third-party Library Prediction for Mobile App Development. <i>IEEE Transactions on Software Engineering</i> , 2020 , 1-1	3.5	17	
294	FastTagRec: fast tag recommendation for software information sites. <i>Automated Software Engineering</i> , 2018 , 25, 675-701	1.5	17	
293	Guest Editors' Introduction: Software Engineering for the Cloud. <i>IEEE Software</i> , 2012 , 29, 26-29	1.5	17	
292	Automated software architecture security risk analysis using formalized signatures 2013,		17	
291	Supporting automated vulnerability analysis using formalized vulnerability signatures 2012,		17	
290	Generating Domain-Specific Visual Language Editors from High-level Tool Specifications 2006,		17	
289	SmartEmbed: A Tool for Clone and Bug Detection in Smart Contracts through Structural Code Embedding 2019 ,		17	
288	Reporting Usability Defects: A Systematic Literature Review. <i>IEEE Transactions on Software Engineering</i> , 2017 , 43, 848-867	3.5	16	
287	Tool support for essential use cases to better capture software requirements 2010,		16	
286	Collaborative Software Engineering 2010 ,		16	
285	Improving automated documentation to code traceability by combining retrieval techniques 2011,		16	
284	SUMLOW: early design-stage sketching of UML diagrams on an E-whiteboard. <i>Software - Practice and Experience</i> , 2008 , 38, 961-994	2.5	16	
283	SoftArch/MTE: Generating Distributed System Test-Beds from High-Level Software Architecture Descriptions. <i>Automated Software Engineering</i> , 2005 , 12, 5-39	1.5	16	
282	Generating essential user interface prototypes to validate requirements 2011,		15	
281	Engineering plug-in software components to support collaborative work. <i>Software - Practice and Experience</i> , 2002 , 32, 983-1013	2.5	15	

280	A Taxonomy of Supervised Learning for IDSs in SCADA Environments. <i>ACM Computing Surveys</i> , 2020 , 53, 1-37	13.4	15
279	2019,		15
278	Automated analysis of performance and energy consumption for cloud applications 2014,		14
277	Model-Driven Development of Mobile Personal Health Care Applications 2008,		14
276	Domain-specific visual languages for specifying and generating data mapping systems. <i>Journal of Visual Languages and Computing</i> , 2004 , 15, 243-263		14
275	Directions in modelling environments. <i>Automation in Construction</i> , 1995 , 4, 173-187	9.6	14
274	Is deep learning better than traditional approaches in tag recommendation for software information sites?. <i>Information and Software Technology</i> , 2019 , 109, 1-13	3.4	14
273	DEFECTCHECKER: Automated Smart Contract Defect Detection by Analyzing EVM Bytecode. <i>IEEE Transactions on Software Engineering</i> , 2021 , 1-1	3.5	14
272	An Empirical Investigation of Personality Traits of Software Testers 2015,		13
271	A visual language and environment for composing web services 2005 ,		13
270	A Survey of Current End-User Data Analytics Tool Support 2018 ,		13
269	An empirical study of the effects of personality on software testing 2013 ,		12
268	Using data mining for digital ink recognition: Dividing text and shapes in sketched diagrams. <i>Computers and Graphics</i> , 2011 , 35, 976-991	1.8	12
267	A combination approach for enhancing automated traceability (NIER track) 2011,		12
266	Synthesizing client load models for performance engineering via web crawling 2007,		12
265	Supporting Flexible Consistency Management via Discrete Change Description Propagation. <i>Software - Practice and Experience</i> , 1996 , 26, 1053-1083	2.5	12
264	Improving Cloud-Based Online Social Network Data Placement and Replication 2016,		12
263	MaramaAIC: tool support for consistency management and validation of requirements. <i>Automated Software Engineering</i> , 2017 , 24, 1-45	1.5	11

(2018-2020)

262	QoE-aware user allocation in edge computing systems with dynamic QoS. <i>Future Generation Computer Systems</i> , 2020 , 112, 684-694	11
261	A Preliminary Survey of Factors Affecting Software Testers 2014 ,	11
260	SecDSVL: A Domain-Specific Visual Language to Support Enterprise Security Modelling 2014,	11
259	Managing Consistency between Textual Requirements, Abstract Interactions and Essential Use Cases 2010 ,	11
258	Collaborative Software Engineering: Concepts and Techniques 2010 , 1-30	11
257	MDSE@R: Model-Driven Security Engineering at Runtime. <i>Lecture Notes in Computer Science</i> , 2012 , 279-295	11
256	Serendipity: Integrated Environment Support for Process Modelling, Enactment and Work Coordination 1998 , 27-60	11
255	Subsuming Methods 2015 ,	10
254	Bootstrapping Mobile App Development 2015 ,	10
253	The effects of openness to experience on pair programming in a higher education context 2011,	10
252	Off-Line Micro-Payment Protocol for Multiple Vendors in Mobile Commerce 2006,	10
251	High-level static and dynamic visualisation of software architectures	10
250	Towards Human-centric Model-driven Software Engineering 2020,	10
249	Reporting usability defects 2016 ,	10
248	A systematic review of scheduling approaches on multi-tenancy cloud platforms. <i>Information and Software Technology</i> , 2021 , 132, 106478	10
247	Constrained App Data Caching over Edge Server Graphs in Edge Computing Environment. <i>IEEE Transactions on Services Computing</i> , 2021 , 1-1	10
246	Rule-based extraction of goal-use case models from text 2015 ,	9
245	Focusing on learning through constructive alignment with task-oriented portfolio assessment. European Journal of Engineering Education, 2018, 43, 569-584	9

244	An automated collaborative requirements engineering tool for better validation of requirements 2016 ,		9
243	A visual language and environment for enterprise system modelling and automation. <i>Journal of Visual Languages and Computing</i> , 2014 , 25, 253-277		9
242	A Preliminary Study on Factors Affecting Software Testing Team Performance 2011,		9
241	Visual specification of multi-view visual environments		9
240	An architecture for developing aspect-oriented Web services 2005,		9
239	Generation of distributed system test-beds from high-level software architecture descriptions		9
238	Heuristics-based indoor positioning systems: a systematic literature review. <i>Journal of Location Based Services</i> , 2016 , 10, 178-211	1.9	9
237	2019,		9
236	Cost-Effective User Allocation in 5G NOMA-based Mobile Edge Computing Systems. <i>IEEE Transactions on Mobile Computing</i> , 2021 , 1-1	4.6	9
235	Data, User and Power Allocations for Caching in Multi-Access Edge Computing. <i>IEEE Transactions on Parallel and Distributed Systems</i> , 2021 , 1-1	3.7	9
234	A comprehensive comparative study of clustering-based unsupervised defect prediction models. Journal of Systems and Software, 2021 , 172, 110862	3.3	9
233	Towards an integrated environment for method engineering 1996 , 45-62		9
232	Specifying model transformations by direct manipulation using concrete visual notations and interactive recommendations. <i>Journal of Visual Languages and Computing</i> , 2015 , 28, 195-211		8
231	An end-to-end model-based approach to support big data analytics development. <i>Journal of Computer Languages</i> , 2020 , 58, 100964	1.5	8
230	GUITAR: An ontology-based automated requirements analysis tool 2014,		8
229	A suite of domain-specific visual languages for scientific software application modelling 2013,		8
228	Reporting Usability Defects 2015 ,		8
227	A suite of visual languages for model-driven development of statistical surveys and services. <i>Journal of Visual Languages and Computing</i> , 2015 , 26, 99-125		8

(2007-2010)

226	Experiences in Developing a Micro-payment System for Peer-to-Peer Networks. <i>International Journal of Information Technology and Web Engineering</i> , 2010 , 5, 23-42	1.3	8
225	Visualizing traceability links between source code and documentation 2012,		8
224	A comparative analysis of design principles for project-based IT courses 1996,		8
223	SOFTARCH: TOOL SUPPORT FOR INTEGRATED SOFTWARE ARCHITECTURE DEVELOPMENT. International Journal of Software Engineering and Knowledge Engineering, 2003, 13, 125-151	1	8
222	Developing software components with the UML, Enterprise Java Beans and aspects		8
221	Interaction Traces Mining for Efficient System Responses Generation. <i>Software Engineering Notes:</i> an Informal Newsletter of the Special Interest Committee on Software Engineering / ACM, 2015 , 40, 1-8	0.4	8
220	Wireframe-based UI Design Search through Image Autoencoder. <i>ACM Transactions on Software Engineering and Methodology</i> , 2020 , 29, 1-31	3.3	8
219	Practitioners [Perceptions of the Goals and Visual Explanations of Defect Prediction Models 2021,		8
218	2019,		8
217	User Perceptions of Using an Open Learner Model Visualisation Tool for Facilitating Self-regulated Learning 2017 ,		7
217		7	7
	Engineering complex data integration, harmonization and visualization systems. <i>Journal of</i>	7	
216	Learning 2017, Engineering complex data integration, harmonization and visualization systems. <i>Journal of Industrial Information Integration</i> , 2019, 16, 100103 A study of the effects of narration on comprehension and memorability of visualisations. <i>Journal of</i>	,	7
216	Engineering complex data integration, harmonization and visualization systems. <i>Journal of Industrial Information Integration</i> , 2019 , 16, 100103 A study of the effects of narration on comprehension and memorability of visualisations. <i>Journal of Computer Languages</i> , 2019 , 52, 113-124 Cost effective dynamic data placement for efficient access of social networks. <i>Journal of Parallel</i>	1.5	7
216 215 214	Engineering complex data integration, harmonization and visualization systems. <i>Journal of Industrial Information Integration</i> , 2019 , 16, 100103 A study of the effects of narration on comprehension and memorability of visualisations. <i>Journal of Computer Languages</i> , 2019 , 52, 113-124 Cost effective dynamic data placement for efficient access of social networks. <i>Journal of Parallel and Distributed Computing</i> , 2020 , 141, 82-98 A Taxonomy and Mapping of Computer-Based Critiquing Tools. <i>IEEE Transactions on Software</i>	1.5	7 7 7
216 215 214 213	Engineering complex data integration, harmonization and visualization systems. <i>Journal of Industrial Information Integration</i> , 2019 , 16, 100103 A study of the effects of narration on comprehension and memorability of visualisations. <i>Journal of Computer Languages</i> , 2019 , 52, 113-124 Cost effective dynamic data placement for efficient access of social networks. <i>Journal of Parallel and Distributed Computing</i> , 2020 , 141, 82-98 A Taxonomy and Mapping of Computer-Based Critiquing Tools. <i>IEEE Transactions on Software Engineering</i> , 2013 , 39, 1494-1520 A Preliminary Study of Open Learner Model Representation Formats to Support Formative	1.5	7 7 7
216 215 214 213 212	Engineering complex data integration, harmonization and visualization systems. <i>Journal of Industrial Information Integration</i> , 2019 , 16, 100103 A study of the effects of narration on comprehension and memorability of visualisations. <i>Journal of Computer Languages</i> , 2019 , 52, 113-124 Cost effective dynamic data placement for efficient access of social networks. <i>Journal of Parallel and Distributed Computing</i> , 2020 , 141, 82-98 A Taxonomy and Mapping of Computer-Based Critiquing Tools. <i>IEEE Transactions on Software Engineering</i> , 2013 , 39, 1494-1520 A Preliminary Study of Open Learner Model Representation Formats to Support Formative Assessment 2015 ,	1.5	7 7 7 7

208	Pounamu: A Meta-Yool for Multi-View Visual Language Environment Construction		7
207	Automated data mapping specification via schema heuristics and user interaction		7
206	Deployed software component testing using dynamic validation agents. <i>Journal of Systems and Software</i> , 2005 , 74, 5-14	3.3	7
205			7
204			7
203	Budgeted Data Caching based on k-Median in Mobile Edge Computing 2020 ,		7
202	Efficient Keyword Search for Building Service-Based Systems Based on Dynamic Programming. <i>Lecture Notes in Computer Science</i> , 2017 , 462-470	0.9	7
201	Understanding the Methodological Issues and Solutions in the Research Design of Stroke Caregiving Technology. <i>Frontiers in Public Health</i> , 2021 , 9, 647249	6	7
200	mHealth applications to support caregiver needs and engagement during stroke recovery: A content review. <i>Research in Nursing and Health</i> , 2021 , 44, 213-225	2	7
199	Ontology-based automated support for goalūse case model analysis. <i>Software Quality Journal</i> , 2016 , 24, 635-673	1.2	6
198	A framework for convergence of cloud services and Internet of things 2015,		6
197	DeepSoft: a vision for a deep model of software 2016 ,		6
196	Performance Analysis for Object-Oriented Software: A Systematic Mapping. <i>IEEE Transactions on Software Engineering</i> , 2015 , 1-1	3.5	6
195	Generating EDI message translations from visual specifications		6
194	Integrating and supporting Entity Relationship and Object Role Models. <i>Lecture Notes in Computer Science</i> , 1995 , 318-328	0.9	6
193	2020,		6
192	Adapting Teaching of a Software Engineering Service Course Due to COVID-19 2020 ,		6
191	The influence of textual and verbal word-of-mouth on website usability and visual appeal. <i>Journal of Supercomputing</i> , 2019 , 75, 1783-1830	2.5	6

190	Off-Line Micro-payment System for Content Sharing in P2P Networks. <i>Lecture Notes in Computer Science</i> , 2005 , 297-307	0.9	6
189	Towards Effective AI-Powered Agile Project Management 2019 ,		5
188	2019,		5
187	A Highly Efficient Data Locality Aware Task Scheduler for Cloud-Based Systems 2019 ,		5
186	Automatic, highly accurate app permission recommendation. <i>Automated Software Engineering</i> , 2019 , 26, 241-274	1.5	5
185	Graph-based data caching optimization for edge computing. <i>Future Generation Computer Systems</i> , 2020 , 113, 228-239	7.5	5
184	A domain-specific visual modeling language for testing environment emulation 2016,		5
183	Performance appraisal of software testers. <i>Information and Software Technology</i> , 2014 , 56, 495-505	3.4	5
182	A Survey of Australian Human Services Agency Software Usage. <i>Journal of Technology in Human Services</i> , 2013 , 31, 84-94	1.8	5
181	A multi-view framework for generating mobile apps 2015 ,		5
180	Adaptive Security Management in SaaS Applications 2014 , 73-102		5
179	CONVErT: A framework for complex model visualisation and transformation 2012,		5
178	Performance assessment metrics for software testers 2012 ,		5
177	A domain-specific visual language for report writing using Microsoft DSL tools 2009,		5
176	MaramaEML: An Integrated Multi-View Business Process Modelling Environment with Tree-Overlays, Zoomable Interfaces and Code Generation 2008 ,		5
175	Comparing and Contrasting Micro-payment Models for Content Sharing in P2P Networks 2007 ,		5
174	A framework for visual notation exchange. Journal of Visual Languages and Computing, 2005, 16, 187-2	12	5
173	ViTABaL: a visual language supporting design by tool abstraction		5

172	Interpreting cloud computer vision pain-points 2020,		5
171	Generating Question Titles for Stack Overflow from Mined Code Snippets. <i>ACM Transactions on Software Engineering and Methodology</i> , 2020 , 29, 1-37	3.3	5
170	VAM-aaS: Online Cloud Services Security Vulnerability Analysis and Mitigation-as-a-Service. <i>Lecture Notes in Computer Science</i> , 2012 , 411-425	0.9	5
169	An empirical study of user perceived usefulness and preference of open learner model visualisations 2016 ,		5
168	Dynamic User Allocation in Stochastic Mobile Edge Computing Systems. <i>IEEE Transactions on Services Computing</i> , 2021 , 1-1	4.8	5
167	Predicting indoor spatial movement using data mining and movement patterns 2017,		4
166	Cost-Effective Social Network Data Placement and Replication Using Graph-Partitioning 2017,		4
165	PathRec 2017,		4
164	What should I document? A preliminary systematic mapping study into API documentation knowledge 2019 ,		4
163	Survey and Analysis of Current End-user Data Analytics Tool Support. <i>IEEE Transactions on Big Data</i> , 2019 , 1-1	3.2	4
162	Supporting multi-view development for mobile applications. <i>Journal of Computer Languages</i> , 2019 , 51, 88-96	1.5	4
161	Opaque service virtualisation 2016 ,		4
160	2012,		4
159	Flexible Modeling Tools (FlexiTools2010) 2010 ,		4
158	Capturing Architecture Documentation Navigation Trails for Content Chunking and Sharing 2011,		4
157	The Visual Wiki: A New Metaphor for Knowledge Access and Management 2009,		4
156	Workshop on flexible modeling tools 2011 ,		4
155	MaramaAl: tool support for capturing and managing consistency of multi-lingual requirements 2012 ,		4

154	Supporting automated software re-engineering using re-aspects 2012 ,		4
153	A taxonomy of computer-supported critics 2010,		4
152	Automatic validation of deployed J2EE components using aspects		4
151	A visual language for design pattern modelling and instantiation		4
150	Three Kinds of E-wallets for a NetPay Micro-Payment System. <i>Lecture Notes in Computer Science</i> , 2004 , 66-77	0.9	4
149	AndroZooOpen 2020 ,		4
148	Capturing Security Requirements Using Essential Use Cases (EUCs). <i>Communications in Computer and Information Science</i> , 2014 , 16-30	0.3	4
147	2020,		4
146	COVID-19 vs Social Media Apps: Does Privacy Really Matter? 2021 ,		4
145	2021,		4
145	Continuous validation for data analytics systems 2016,		4
144	Continuous validation for data analytics systems 2016 , Improving the Modelling of Human-centric Aspects of Software Systems: A Case Study of Modelling	3.4	
144	Continuous validation for data analytics systems 2016, Improving the Modelling of Human-centric Aspects of Software Systems: A Case Study of Modelling End User Age in Wirefame Designs 2021, Recruitment, engagement and feedback in empirical software engineering studies in industrial	3.4	4
144 143 142	Continuous validation for data analytics systems 2016, Improving the Modelling of Human-centric Aspects of Software Systems: A Case Study of Modelling End User Age in Wirefame Designs 2021, Recruitment, engagement and feedback in empirical software engineering studies in industrial contexts. Information and Software Technology, 2018, 98, 161-172 Developing Mobile Applications Via Model Driven Development: A Systematic Literature Review.		4
144 143 142 141	Continuous validation for data analytics systems 2016, Improving the Modelling of Human-centric Aspects of Software Systems: A Case Study of Modelling End User Age in Wirefame Designs 2021, Recruitment, engagement and feedback in empirical software engineering studies in industrial contexts. Information and Software Technology, 2018, 98, 161-172 Developing Mobile Applications Via Model Driven Development: A Systematic Literature Review. Information and Software Technology, 2021, 140, 106693	3.4	4 4
144 143 142 141 140	Continuous validation for data analytics systems 2016, Improving the Modelling of Human-centric Aspects of Software Systems: A Case Study of Modelling End User Age in Wirefame Designs 2021, Recruitment, engagement and feedback in empirical software engineering studies in industrial contexts. Information and Software Technology, 2018, 98, 161-172 Developing Mobile Applications Via Model Driven Development: A Systematic Literature Review. Information and Software Technology, 2021, 140, 106693 Software Engineering for Internet of Things. IEEE Transactions on Software Engineering, 2021, 1-1	3.4	4 4 4

136	An empirical study to review and revise job responsibilities of software testers 2014,		3
135	Development of Robust Traceability Benchmarks 2013,		3
134	A Preliminary User Evaluation of an Infrastructure to Support Activity-Based Computing in Global Software Development (ABC4GSD) 2013 ,		3
133	StressCloud: A Tool for Analysing Performance and Energy Consumption of Cloud Applications 2015 ,		3
132	Integrating goal-oriented and use case-based requirements engineering: The missing link 2015,		3
131	Improving Tenants' Trust in SaaS Applications Using Dynamic Security Monitors 2015 ,		3
130	Performance Analysis Using Subsuming Methods: An Industrial Case Study 2015,		3
129	A Study of Architectural Information Foraging in Software Architecture Documents 2012,		3
128	Integrated Data Mapping for a Software Meta-tool 2009 ,		3
127	A domain specific visual language for design and coordination of supply networks. <i>Visual Languages and Human-Centric Computing, 2009 VL/HCC 2009 IEEE Symposium on,</i> 2008 ,		3
126	MaramaTatau: Extending a Domain Specific Visual Language Meta Tool with a Declarative Constraint Mechanism 2007 ,		3
125	2006,		3
124	Customer Perceptions of a Thin-Client Micro-Payment System. <i>Journal of Organizational and End User Computing</i> , 2003 , 15, 62-77	6.2	3
123	Software architecture modelling, analysis and implementation with SoftArch		3
122	Visual Languages for Supporting Big Data Analytics Development 2020 ,		3
121	Architecture for a Component-Based, Plug-In Micro-payment System. <i>Lecture Notes in Computer Science</i> , 2003 , 251-262	0.9	3
120	Providing integrated support for multiple development notations. <i>Notes on Numerical Fluid Mechanics and Multidisciplinary Design</i> , 1995 , 255-268	0.3	3
119	What Influences Usability Defect Reporting? A Survey of Software Development Practitioners 2016 ,		3

(2004-2020)

118	Authoring logically sequenced visual data stories with Gravity. <i>Journal of Computer Languages</i> , 2020 , 58, 100961	1.5	3
117	SQAPlanner: Generating Data-Informed Software Quality Improvement Plans. <i>IEEE Transactions on Software Engineering</i> , 2021 , 1-1	3.5	3
116	The Effects of Human Aspects on the Requirements Engineering Process: A Systematic Literature Review. <i>IEEE Transactions on Software Engineering</i> , 2021 , 1-1	3.5	3
115	Preliminary Evaluation of a Guided Usability Defect Report Form 2018,		3
114	PedaViz 2018 ,		3
113	. IEEE Software, 2021 , 38, 115-120	1.5	3
112	Technical Q8A Site Answer Recommendation via Question Boosting. <i>ACM Transactions on Software Engineering and Methodology</i> , 2021 , 30, 1-34	3.3	3
111	Merging Intelligent API Responses Using a Proportional Representation Approach. <i>Lecture Notes in Computer Science</i> , 2019 , 391-406	0.9	2
110	Quality concerns in large-scale and complex software-intensive systems 2016 , 1-17		2
109	Visualising melbourne pedestrian count 2017 ,		2
108	Technical debt interest assessment 2017 ,		2
107	Supporting requirements modelling in the Malay language using essential use cases 2012,		2
106	SMURF: Supporting Multi-tenancy Using Re-aspects Framework 2012 ,		2
105	KaitoroCap: A Document Navigation Capture and Visualisation Tool 2011 ,		2
104	Supporting operating system kernel data disambiguation using points-to analysis 2012,		2
103	Towards a unified event-based software architecture 1996 ,		2
102	Tool integration, collaboration and user interaction issues in component-based software architectures		2
101	Workshop on directions in software engineering environments (WoDiSEE). <i>Software Engineering Notes: an Informal Newsletter of the Special Interest Committee on Software Engineering / ACM</i> , 2004 , 29, 1-3	0.4	2

100	Approaches to supporting software visual notation exchange		2
99	Towards Understanding Technical Responses to Requirements Changes in Agile Teams 2020,		2
98	An Empirical Study of Release Note Production and Usage in Practice. <i>IEEE Transactions on Software Engineering</i> , 2020 , 1-1	3.5	2
97	How Usability Defects Defer from Non-Usability Defects? : A Case Study on Open Source Projects. <i>International Journal on Advanced Science, Engineering and Information Technology</i> , 2020 , 10, 98	1.6	2
96	Beware the evolving Intelligent web service! an integration architecture tactic to guard AI-first components 2020 ,		2
95	DiffTech: a tool for differencing similar technologies from question-and-answer discussions 2020,		2
94	Why Do Smart Contracts Self-Destruct? Investigating the Selfdestruct Function on Ethereum. <i>ACM Transactions on Software Engineering and Methodology</i> , 2022 , 31, 1-37	3.3	2
93	A Visual Language for Design Pattern Modeling and Instantiation 2007 , 20-43		2
92	Deep Cost-Sensitive Kernel Machine for Binary Software Vulnerability Detection. <i>Lecture Notes in Computer Science</i> , 2020 , 164-177	0.9	2
91	Supporting Large-Scale End User Specification of Workflows, Work Coordination and Tool Integration. <i>Journal of Organizational and End User Computing</i> , 1998 , 10, 38-48	6.2	2
90	A revised open source usability defect classification taxonomy. <i>Information and Software Technology</i> , 2020 , 128, 106396	3.4	2
89	Using Work System Design, User Stories and Emotional Goal Modeling for an mHealth System 2020 ,		2
88	Human-Centric Issues in eHealth App Development and Usage: A Preliminary Assessment 2021,		2
87	Improving Human-Centric Software Defect Evaluation, Reporting, and Fixing 2021,		2
86	A human-centric approach to building a smarter and better parking application 2021,		2
85	Enhanced playback of automated service emulation models using entropy analysis 2016,		2
84	HumaniSE: Approaches to Achieve More Human-Centric Software Engineering. <i>Communications in Computer and Information Science</i> , 2021 , 444-468	0.3	2
83	OL-MEDC: An Online Approach for Cost-effective Data Caching in Mobile Edge Computing Systems. <i>IEEE Transactions on Mobile Computing</i> , 2021 , 1-1	4.6	2

(2013-2018)

82	DCTracVis: a system retrieving and visualizing traceability links between source code and documentation. <i>Automated Software Engineering</i> , 2018 , 25, 703-741	1.5	2
81	Technology-based support for stroke caregiving: A rapid review of evidence. <i>Journal of Nursing Management</i> , 2021 ,	4.9	2
80	Embedding app-library graph for neural third party library recommendation 2021,		2
79	Software Tools		2
78	External Requirements of Groupware Development Tools. <i>IFIP Advances in Information and Communication Technology</i> , 1999 , 363-376	0.5	2
77	A Survey on Deep Learning for Software Engineering. ACM Computing Surveys,	13.4	2
76	Supporting Scientists in Re-engineering Sequential Programs to Parallel Using Model-Driven Engineering 2015 ,		1
75	Managing Trade-Offs in Adaptable Software Architectures 2017 , 1-13		1
74	TeeVML: tool support for semi-automatic integration testing environment emulation 2016,		1
73	Does textual word-of-mouth affect look and feel? 2016 ,		1
72	Foreword by John Grundy: Architecture vs Agile: competition or cooperation? 2014, xxi-xxvii		1
71	Adaptive Security for Software Systems 2017 , 99-127		1
70	Generating Reusable Visual Notations Using Model Transformation. <i>International Journal of Software Engineering and Knowledge Engineering</i> , 2015 , 25, 277-305	1	1
69	Generating Reusable Visual Notations using Model Transformation 2014,		1
68	HorusCML: Context-aware domain-specific visual languages designer 2014 ,		1
67	Using concrete visual notations as first class citizens for model transformation specification 2013,		1
66	2013,		1
65	Tool support for automatic model transformation specification using concrete visualisations 2013,		1

64	Design of a Suite of Visual Languages for Supply Chain Specification 2010 ,	1
63	MaramaAI: Automated and Visual Approach for Inconsistency Checking of Requirements 2010,	1
62	Critic Authoring Templates for Specifying Domain-Specific Visual Language Tool Critics 2009,	1
61	Experiences in using Java on a software tool integration project	1
60	Experiences developing architectures for realizing thin-client diagram editing tools. <i>Software - Practice and Experience</i> , 2007 , 37, 1245-1283	1
59	Model Driven Design and Implementation of Statistical Surveys 2007,	1
58	2005,	1
57	An environment for automated performance evaluation of J2EE and ASP.NET thin-client architectures 2004 ,	1
56	Supporting dynamic software tool integration via Web service-based components	1
55	VISUAL SPECIFICATION AND MONITORING OF SOFTWARE AGENTS IN DECENTRALIZED PROCESS-CENTRED ENVIRONMENTS. <i>International Journal of Software Engineering and Knowledge</i> 1 <i>Engineering</i> , 1999 , 09, 425-444	1
54	Modelling human-centric aspects of end-users with iStar. <i>Journal of Computer Languages</i> , 2022 , 68, 10109.5	1
53	Addressing the Influence of End User Human Aspects on Software Engineering. Communications in Computer and Information Science, 2022, 241-264	1
52	Score-Based Automatic Detection and Resolution of Syntactic Ambiguity in Natural Language Requirements 2020 ,	1
51	User-centred tooling for modelling of big data applications 2020,	1
50	Towards Self-securing Software Systems 2019 , 119-130	1
49	Dual-Component Deep Domain Adaptation: A New Approach for Cross Project Software Vulnerability Detection. <i>Lecture Notes in Computer Science</i> , 2020 , 699-711	1
48	Threshy: supporting safe usage of intelligent web services 2020 ,	1
47	Information, Involvement, Self-care and Support - The Needs of Caregivers of People with Stroke: A Grounded Theory Approach	1

46	Web-enabling an Integrated Health Informatics System 2001 , 477-485		1
45	An Architecture for Building Multi-device Thin-Client Web User Interfaces. <i>Notes on Numerical Fluid Mechanics and Multidisciplinary Design</i> , 2002 , 728-732	0.3	1
44	A Toolkit for Building More Adaptable User Interfaces for Vision-Impaired Users 2021,		1
43	. IEEE Transactions on Software Engineering, 2020 , 1-1	3.5	1
42	Building Digital Ink Recognizers Using Data Mining: Distinguishing between Text and Shapes in Hand Drawn Diagrams. <i>Lecture Notes in Computer Science</i> , 2010 , 358-367	0.9	1
41	Operating System Kernel Data Disambiguation to Support Security Analysis. <i>Lecture Notes in Computer Science</i> , 2012 , 263-276	0.9	1
40	Automated Support to Capture and Validate Security Requirements for Mobile Apps. <i>Communications in Computer and Information Science</i> , 2016 , 97-112	0.3	1
39	Engineering Component-based, User-configurable Collaborative Editing Systems. <i>IFIP Advances in Information and Communication Technology</i> , 1999 , 111-128	0.5	1
38	A Pair-Oriented Requirements Engineering Approach for Analysing Multi-lingual Requirements. <i>Communications in Computer and Information Science</i> , 2014 , 150-164	0.3	1
37	End-User-Oriented Tool Support for Modeling Data Analytics Requirements 2020,		1
36	Usage-based chunking of Software Architecture information to assist information finding. <i>Journal of Systems and Software</i> , 2016 , 122, 215-238	3.3	1
35	An efficient deadline constrained and data locality aware dynamic scheduling framework for multitenancy clouds. <i>Concurrency Computation Practice and Experience</i> , 2021 , 33, e6037	1.4	1
34	A Faceted Taxonomy of Requirements Changes in Agile Contexts. <i>IEEE Transactions on Software Engineering</i> , 2021 , 1-1	3.5	1
33	Context-aware Retrieval-based Deep Commit Message Generation. <i>ACM Transactions on Software Engineering and Methodology</i> , 2021 , 30, 1-30	3.3	1
32	Maintenance-related concerns for post-deployed Ethereum smart contract development: issues, techniques, and future challenges. <i>Empirical Software Engineering</i> , 2021 , 26, 1	3.3	1
31	Guest editors introduction: special issue on innovative automated software engineering tools. <i>Automated Software Engineering</i> , 2013 , 20, 137-139	1.5	0
30	Data Collection Mechanisms in Health and Wellness Apps: Review and Analysis <i>JMIR MHealth and UHealth</i> , 2022 , 10, e30468	5.5	0
29	APIMatchmaker: Matching the Right APIs for Supporting the Development of Android Apps. <i>IEEE Transactions on Software Engineering</i> , 2022 , 1-1	3.5	O

28	Emotimonitor: A Trello power-up to capture and monitor emotions of Agile teams. <i>Journal of Systems and Software</i> , 2022 , 186, 111206	3.3	О
27	Code Action Network for Binary Function Scope Identification. <i>Lecture Notes in Computer Science</i> , 2020 , 712-725	0.9	О
26	On the Reproducibility and Replicability of Deep Learning in Software Engineering. <i>ACM Transactions on Software Engineering and Methodology</i> , 2022 , 31, 1-46	3.3	О
25	Mobile Application Testing in Industrial Contexts: An Exploratory Multiple Case-Study. <i>Communications in Computer and Information Science</i> , 2015 , 30-41	0.3	O
24	Deploying Multi-Agents for Intelligent Aspect-Oriented Web Services. <i>Lecture Notes in Computer Science</i> , 2009 , 284-296	0.9	О
23	A Static Analysis of Android Source Code for Lifecycle Development Usage Patterns. <i>Journal of Computer Science</i> , 2019 , 15, 92-107	0.5	O
22	CORG: A Component-Oriented Synthetic Textual Requirements Generator. <i>Lecture Notes in Computer Science</i> , 2021 , 54-70	0.9	О
21	Icon2Code: Recommending code implementations for Android GUI components. <i>Information and Software Technology</i> , 2021 , 138, 106619	3.4	O
20	An Empirical Study on How Well Do COVID-19 Information Dashboards Service User Information Needs. <i>IEEE Transactions on Services Computing</i> , 2021 , 1-1	4.8	О
19	Determining the Cause of Design Model Inconsistencies. <i>Computer</i> , 2014 , 47, 6-6	1.6	
18	Guest editors introduction: special issue on innovative automated software engineering toolspart #2. <i>Automated Software Engineering</i> , 2013 , 20, 297-298	1.5	
17	Identifying OS Kernel Objects for Run-Time Security Analysis. <i>Lecture Notes in Computer Science</i> , 2012 , 72-85	0.9	
16	Desert Island. Automated Software Engineering, 2003, 10, 303-304	1.5	
15	AUIT: Adaptable User Interface Technology, with Extended Java Server Pages 2005 , 149-167		
14	Modelling Age of End-Users Using Wire-Frames. <i>Communications in Computer and Information Science</i> , 2022 , 44-66	0.3	
13	Deep Just-In-Time Defect Localization. IEEE Transactions on Software Engineering, 2021, 1-1	3.5	
12	Three Integration Methods for a Component-Based NetPay Vendor System. <i>Lecture Notes in Computer Science</i> , 2004 , 782-787	0.9	
11	A Domain-Specific Modeling Approach for Testing Environment Emulation. <i>Communications in Computer and Information Science</i> , 2018 , 272-299	0.3	

LIST OF PUBLICATIONS

Summary of the INTERACT97 Workshop on the Next Generation of CSCW Systems **1997**, 699-700

9	NetPay Micro-Payment Protocols for Three Networks. <i>Advanced Information and Knowledge Processing</i> , 2010 , 429-449	0.3
8	Emerging Issues in Relating Software Requirements and Architecture 2011 , 303-306	
7	P2P-NetPay 2012 , 159-182	
6	Runtime Verification of Business Cloud Workflow Temporal Conformance. <i>IEEE Transactions on Services Computing</i> , 2020 , 1-1	4.8
5	Software Engineering in Australasia. <i>Software Engineering Notes: an Informal Newsletter of the Special Interest Committee on Software Engineering / ACM</i> , 2021 , 46, 16-17	0.4
4	Characterising indoor positioning estimation using experimental data from an active RFID-based real-time location system. <i>Journal of Location Based Services</i> , 2016 , 10, 262-284	1.9
3	DiffTech: Differencing Similar Technologies from Crowd-Scale Comparison Discussions. <i>IEEE Transactions on Software Engineering</i> , 2021 , 1-1	3.5
2	BiDaML in Practice: Collaborative Modeling of Big Data Analytics Application Requirements. <i>Communications in Computer and Information Science</i> , 2021 , 106-129	0.3
1	mHealth intervention for carers of individuals with a history of stroke: Heuristic evaluation and user perspectives <i>Digital Health</i> , 2022 , 8, 20552076221089070	4