
Camilla Pramfalk

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9540296/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	<i>Soat2</i> ties cholesterol metabolism to βâ€oxidation and glucose tolerance in male mice. Journal of Internal Medicine, 2022, 292, 296-307.	2.7	6
2	Abstract 10013: PRDs Are Multifunctional Oral Inhibitors of PCSK9 and ACAT2. Circulation, 2021, 144, .	1.6	0
3	Modifying nutritional substrates induces macrovesicular lipid droplet accumulation and metabolic alterations in a cellular model of hepatic steatosis. Physiological Reports, 2020, 8, e14482.	0.7	7
4	Generation of new hepatocyte-like in vitro models better resembling human lipid metabolism. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2020, 1865, 158659.	1.2	2
5	Hepatic de novo lipogenesis is suppressed and fat oxidation is increased by omega-3 fatty acids at the expense of glucose metabolism. BMJ Open Diabetes Research and Care, 2020, 8, e000871.	1.2	46
6	Effects on hepatic lipid metabolism in human hepatoma cells following overexpression of TGFβ induced factor homeobox 1 or 2. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2019, 1864, 756-762.	1.2	3
7	Fasting hepatic de novo lipogenesis is not reliably assessed using circulating fatty acid markers. American Journal of Clinical Nutrition, 2019, 109, 260-268.	2.2	21
8	Ezetimibe in Combination With Simvastatin Reduces Remnant Cholesterol Without Affecting Biliary Lipid Concentrations in Gallstone Patients. Journal of the American Heart Association, 2018, 7, e009876.	1.6	24
9	Overexpression of transforming growth factor Î ² induced factor homeobox 1 represses NPC1L1 and lowers markers of intestinal cholesterol absorption. Atherosclerosis, 2018, 275, 246-255.	0.4	4
10	In vitro cellular models of human hepatic fatty acid metabolism: differences between Huh7 and HepG2 cell lines in human and fetal bovine culturing serum. Physiological Reports, 2017, 5, e13532.	0.7	48
11	Fasting Plasma Insulin Concentrations Are Associated With Changes in Hepatic Fatty Acid Synthesis and Partitioning Prior to Changes in Liver Fat Content in Healthy Adults. Diabetes, 2016, 65, 1858-1867.	0.3	37
12	Diabetes Mellitus Is Associated With Reduced High-Density Lipoprotein Sphingosine-1-Phosphate Content and Impaired High-Density Lipoprotein Cardiac Cell Protection. Arteriosclerosis, Thrombosis, and Vascular Biology, 2016, 36, 817-824.	1.1	61
13	Culturing of HepG2 cells with human serum improve their functionality and suitability in studies of lipid metabolism. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2016, 1861, 51-59.	1.2	11
14	Sex-Specific Differences in Hepatic Fat Oxidation and Synthesis May Explain the Higher Propensity for NAFLD in Men. Journal of Clinical Endocrinology and Metabolism, 2015, 100, 4425-4433.	1.8	108
15	From whole body to cellular models of hepatic triglyceride metabolism: man has got to know his limitations. American Journal of Physiology - Endocrinology and Metabolism, 2015, 308, E1-E20.	1.8	30
16	Role of TG-interacting factor (Tgif) in lipid metabolism. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2015, 1851, 9-12.	1.2	7
17	TG-interacting factor 1 acts as a transcriptional repressor of sterol O-acyltransferase 2. Journal of Lipid Research, 2014, 55, 709-717.	2.0	11
18	The storage stability and concentration of acetoacetate differs between blood fractions. Clinica Chimica Acta, 2014, 433, 278-283.	0.5	18

CAMILLA PRAMFALK

#	Article	IF	CITATIONS
19	Estrogen Signalling and the Metabolic Syndrome: Targeting the Hepatic Estrogen Receptor Alpha Action. PLoS ONE, 2013, 8, e57458.	1.1	46
20	Cholesteryl esters and ACAT. European Journal of Lipid Science and Technology, 2012, 114, 624-633.	1.0	21
21	Role of thyroid receptor β in lipid metabolism. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2011, 1812, 929-937.	1.8	48
22	Hepatic Niemann–Pick C1-like 1. Current Opinion in Lipidology, 2011, 22, 225-230.	1.2	25
23	HNF1Â and SREBP2 are important regulators of NPC1L1 in human liver. Journal of Lipid Research, 2010, 51, 1354-1362.	2.0	32
24	HNF1α and SREBP2 are important regulators of NPC1L1 in human liver. Journal of Lipid Research, 2010, 51, 1354-1362.	2.0	46
25	Thyroid hormones and thyroid hormone receptors: effects of thyromimetics on reverse cholesterol transport. World Journal of Gastroenterology, 2010, 16, 5958-64.	1.4	26
26	Cholesterol regulates ACAT2 gene expression and enzyme activity in human hepatoma cells. Biochemical and Biophysical Research Communications, 2007, 364, 402-409.	1.0	22
27	Control of ACAT2 liver expression by HNF1. Journal of Lipid Research, 2005, 46, 1868-1876.	2.0	28