List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9540049/publications.pdf Version: 2024-02-01

		23544	38368
227	11,715	58	95
papers	citations	h-index	g-index
227	227	227	8207
all docs	docs citations	times ranked	citing authors

HONGWEI RAL

#	Article	IF	CITATIONS
1	Progress on the morphological control of conductive network in conductive polymer composites and the use as electroactive multifunctional materials. Progress in Polymer Science, 2014, 39, 627-655.	11.8	553
2	Realizing the enhancement of interfacial interaction in semicrystalline polymer/filler composites via interfacial crystallization. Progress in Polymer Science, 2012, 37, 1425-1455.	11.8	355
3	Compatibilization of Immiscible Poly(propylene)/Polystyrene Blends Using Clay. Macromolecular Rapid Communications, 2003, 24, 231-235.	2.0	292
4	New Understanding in Tuning Toughness of β-Polypropylene: The Role of β-Nucleated Crystalline Morphology. Macromolecules, 2009, 42, 9325-9331.	2.2	274
5	Water-induced shape memory effect of graphene oxide reinforced polyvinyl alcohol nanocomposites. Journal of Materials Chemistry A, 2014, 2, 2240-2249.	5.2	261
6	Tailoring Impact Toughness of Poly(<scp>l</scp> -lactide)/Poly(Îμ-caprolactone) (PLLA/PCL) Blends by Controlling Crystallization of PLLA Matrix. ACS Applied Materials & Interfaces, 2012, 4, 897-905.	4.0	218
7	Influence of Annealing on Microstructure and Mechanical Properties of Isotactic Polypropylene with β-Phase Nucleating Agent. Macromolecules, 2009, 42, 6647-6655.	2.2	209
8	Control of Crystal Morphology in Poly(<scp>l</scp> -lactide) by Adding Nucleating Agent. Macromolecules, 2011, 44, 1233-1237.	2.2	203
9	Largely improved toughness of PP/EPDM blends by adding nano-SiO2 particles. Polymer, 2007, 48, 860-869.	1.8	190
10	A simple and efficient method to prepare graphene by reduction of graphite oxide with sodium hydrosulfite. Nanotechnology, 2011, 22, 045704.	1.3	190
11	Kinetics-controlled compatibilization of immiscible polypropylene/polystyrene blends using nano-SiO2 particles. Polymer, 2004, 45, 1913-1922.	1.8	189
12	Study on the phase structures and toughening mechanism in PP/EPDM/SiO2 ternary composites. Polymer, 2006, 47, 2106-2115.	1.8	179
13	Direct Formation of Nanohybrid Shish-Kebab in the Injection Molded Bar of Polyethylene/Multiwalled Carbon Nanotubes Composite. Macromolecules, 2009, 42, 7016-7023.	2.2	159
14	Stereocomplex formation of high-molecular-weight polylactide: A low temperature approach. Polymer, 2012, 53, 5449-5454.	1.8	150
15	Significantly Improving Oxygen Barrier Properties of Polylactide via Constructing Parallel-Aligned Shish-Kebab-Like Crystals with Well-Interlocked Boundaries. Biomacromolecules, 2014, 15, 1507-1514.	2.6	147
16	Recent Advances in Processing of Stereocomplexâ€Type Polylactide. Macromolecular Rapid Communications, 2017, 38, 1700454.	2.0	139
17	Toughening of poly(l-lactide) with poly(Îμ-caprolactone): Combined effects of matrix crystallization and impact modifier particle size. Polymer, 2013, 54, 5257-5266.	1.8	129
18	New insight on the annealing induced microstructural changes and their roles in the toughening of β-form polypropylene. Polymer, 2011, 52, 2351-2360.	1.8	128

#	Article	IF	CITATIONS
19	Formation of Shish-Kebabs in Injection-Molded Poly(<scp>l</scp> -lactic acid) by Application of an Intense Flow Field. ACS Applied Materials & Interfaces, 2012, 4, 6774-6784.	4.0	128
20	Remarkably Enhanced Impact Toughness and Heat Resistance of poly(<scp>l</scp> -Lactide)/Thermoplastic Polyurethane Blends by Constructing Stereocomplex Crystallites in the Matrix. ACS Sustainable Chemistry and Engineering, 2016, 4, 111-120.	3.2	123
21	Enhancing mechanical performance of polylactide by tailoring crystal morphology and lamellae orientation with the aid of nucleating agent. Polymer, 2014, 55, 6924-6934.	1.8	122
22	Highly Sensitive, Ultrastretchable Strain Sensors Prepared by Pumping Hybrid Fillers of Carbon Nanotubes/Cellulose Nanocrystal into Electrospun Polyurethane Membranes. ACS Applied Materials & Interfaces, 2019, 11, 12968-12977.	4.0	122
23	Improving impact toughness of polylactide/poly(ether)urethane blends via designing the phase morphology assisted by hydrophilic silica nanoparticles. Polymer, 2014, 55, 1593-1600.	1.8	120
24	Preparation and properties of chitosan nanocomposites with nanofillers of different dimensions. Polymer Degradation and Stability, 2009, 94, 124-131.	2.7	117
25	Selective localization of multi-walled carbon nanotubes in thermoplastic elastomer blends: An effective method for tunable resistivity–strain sensing behavior. Composites Science and Technology, 2014, 92, 16-26.	3.8	116
26	The preparation of high performance and conductive poly (vinyl alcohol)/graphene nanocomposite via reducing graphite oxide with sodium hydrosulfite. Composites Science and Technology, 2011, 71, 1266-1270.	3.8	113
27	Facile one-step preparation of robust hydrophobic cotton fabrics by covalent bonding polyhedral oligomeric silsesquioxane for ultrafast oil/water separation. Chemical Engineering Journal, 2020, 379, 122391.	6.6	107
28	Shish–kebab of polyolefin by "melt manipulation―strategy in injection-molding: A convenience pathway from fundament to application. Polymer, 2008, 49, 4745-4755.	1.8	105
29	The interplay of thermodynamics and shear on the dispersion of polymer nanocomposite. Polymer, 2004, 45, 7953-7960.	1.8	97
30	Toward Supertough and Heat-Resistant Stereocomplex-Type Polylactide/Elastomer Blends with Impressive Melt Stability via <i>in Situ</i> Formation of Graft Copolymer during One-Pot Reactive Melt Blending. Macromolecules, 2019, 52, 1718-1730.	2.2	94
31	Formation of Conductive Networks with Both Segregated and Double-Percolated Characteristic in Conductive Polymer Composites with Balanced Properties. ACS Applied Materials & Interfaces, 2014, 6, 6835-6844.	4.0	92
32	Polyethylene toughened by rigid inorganic particles. Polymer Engineering and Science, 1992, 32, 94-97.	1.5	89
33	Interfacial crystallization enhanced interfacial interaction of Poly (butylene succinate)/ramie fiber biocomposites using dopamine as a modifier. Composites Science and Technology, 2014, 91, 22-29.	3.8	89
34	Facile preparation of rapidly electro-active shape memory thermoplastic polyurethane/polylactide blends via phase morphology control and incorporation of conductive fillers. Polymer, 2017, 114, 28-35.	1.8	89
35	Selective localization of titanium dioxide nanoparticles at the interface and its effect on the impact toughness of poly(L-lactide)/poly(ether)urethane blends. EXPRESS Polymer Letters, 2013, 7, 261-271.	1.1	87
36	Microfibrillated cellulose-reinforced bio-based poly(propylene carbonate) with dual shape memory and self-healing properties. Journal of Materials Chemistry A, 2014, 2, 20393-20401.	5.2	84

#	Article	IF	CITATIONS
37	Fabrication of PLA/CNC/CNT conductive composites for high electromagnetic interference shielding based on Pickering emulsions method. Composites Part A: Applied Science and Manufacturing, 2019, 125, 105558.	3.8	83
38	Observation of Shear-Induced Hybrid Shish Kebab in the Injection Molded Bars of Linear Polyethylene Containing Inorganic Whiskers. Macromolecules, 2007, 40, 8533-8536.	2.2	82
39	Selective localization of multi-walled carbon nanotubes in bi-component biodegradable polyester blend for rapid electroactive shape memory performance. Composites Science and Technology, 2016, 125, 38-46.	3.8	82
40	Surface modifications of boron nitride nanosheets for poly(vinylidene fluoride) based film capacitors: advantages of edge-hydroxylation. Journal of Materials Chemistry A, 2019, 7, 7664-7674.	5.2	82
41	Anisotropic multilayer conductive networks in carbon nanotubes filled polyethylene/polypropylene blends obtained through high speed thin wall injection molding. Polymer, 2013, 54, 6425-6436.	1.8	81
42	Enhanced shape memory property of polylactide/thermoplastic poly(ether)urethane composites via carbon black self-networking induced co-continuous structure. Composites Science and Technology, 2017, 139, 8-16.	3.8	80
43	Superior Reinforcement in Melt-Spun Polyethylene/Multiwalled Carbon Nanotube Fiber through Formation of a Shish-Kebab Structure. Journal of Physical Chemistry B, 2010, 114, 10693-10702.	1.2	79
44	The hierarchy structure and orientation of high density polyethylene obtained via dynamic packing injection molding. Polymer, 2006, 47, 6857-6867.	1.8	78
45	Shear induced fiber orientation, fiber breakage and matrix molecular orientation in long glass fiber reinforced polypropylene composites. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2011, 528, 3169-3176.	2.6	76
46	Enhancing the melt stability of polylactide stereocomplexes using a solid-state cross-linking strategy during a melt-blending process. Polymer Chemistry, 2014, 5, 5985-5993.	1.9	76
47	Dependence of mechanical properties on βâ€form content and crystalline morphology for βâ€nucleated isotactic polypropylene. Polymers for Advanced Technologies, 2011, 22, 2044-2054.	1.6	74
48	Preparation of high performance conductive polymer fibres from double percolated structure. Journal of Materials Chemistry, 2011, 21, 6401.	6.7	71
49	Control of the hierarchical structure of polymer articles via "structuring―processing. Progress in Polymer Science, 2014, 39, 891-920.	11.8	71
50	Ultrahigh-performance electrospun polylactide membranes with excellent oil/water separation ability via interfacial stereocomplex crystallization. Journal of Materials Chemistry A, 2017, 5, 19729-19737.	5.2	67
51	Tensile properties in the oriented blends of high-density polyethylene and isotactic polypropylene obtained by dynamic packing injection molding. Polymer, 2005, 46, 3190-3198.	1.8	66
52	Vibration-induced change of crystal structure in isotactic polypropylene and its improved mechanical properties. Journal of Polymer Science, Part B: Polymer Physics, 2004, 42, 2385-2390.	2.4	64
53	Synergistic toughening effects of nucleating agent and ethylene–octene copolymer on polypropylene. Journal of Applied Polymer Science, 2008, 108, 3270-3280.	1.3	64
54	Brittle-Ductile Transition and Toughening Mechanism in POM/TPU/CaCO3 Ternary Composites. Macromolecular Materials and Engineering, 2004, 289, 41-48.	1.7	63

#	Article	IF	CITATIONS
55	Synergistic toughening of polypropylene random copolymer at low temperature: Î ² -Modification and annealing. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2011, 528, 7052-7059.	2.6	63
56	Shear-induced change of exfoliation and orientation in polypropylene/montmorillonite nanocomposites. Journal of Polymer Science, Part B: Polymer Physics, 2003, 41, 1-10.	2.4	62
57	Controlled Vertically Aligned Structures in Polymer Composites: Natural Inspiration, Structural Processing, and Functional Application. Advanced Materials, 2021, 33, e2103495.	11.1	62
58	Simultaneous the thermodynamics favorable compatibility and morphology to achieve excellent comprehensive mechanics in PLA/OBC blend. Polymer, 2014, 55, 6409-6417.	1.8	61
59	Dependence of impact strength on the fracture propagation direction in dynamic packing injection molded PP/EPDM blends. Polymer, 2003, 44, 4261-4271.	1.8	59
60	Functionalized multi-walled carbon nanotubes improve nonisothermal crystallization of poly(ethylene terephthalate). Polymer Testing, 2008, 27, 179-188.	2.3	58
61	A promising alternative to conventional polyethylene with poly(propylene carbonate) reinforced by graphene oxide nanosheets. Journal of Materials Chemistry, 2011, 21, 17627.	6.7	58
62	Largely enhanced crystallization of semi-crystalline polymer on the surface ofÂglass fiber by using graphene oxide as a modifier. Polymer, 2013, 54, 303-309.	1.8	57
63	The effect of surface modification of glass fiber on the performance of poly(lactic acid) composites: Graphene oxide vs. silane coupling agents. Applied Surface Science, 2018, 435, 1046-1056.	3.1	56
64	Hierarchical structure of injection-molded bars of HDPE/MWCNTs composites with novel nanohybrid shish–kebab. Polymer, 2010, 51, 774-782.	1.8	55
65	Powder metallurgy inspired low-temperature fabrication of high-performance stereocomplexed polylactide products with good optical transparency. Scientific Reports, 2016, 6, 20260.	1.6	55
66	Molecular dynamics simulations of orientation induced interfacial enhancement between single walled carbon nanotube and aromatic polymers chains. Composites Part A: Applied Science and Manufacturing, 2015, 73, 155-165.	3.8	54
67	Towards high-performance poly(<scp>l</scp> -lactide)/elastomer blends with tunable interfacial adhesion and matrix crystallization via constructing stereocomplex crystallites at the interface. RSC Advances, 2014, 4, 49374-49385.	1.7	52
68	Hierarchical structure and unique impact behavior of polypropylene/ethylene-octene copolymer blends as obtained via dynamic packing injection molding. Polymer, 2013, 54, 3392-3401.	1.8	51
69	Fabrication of well-controlled porous foams of graphene oxide modified poly(propylene-carbonate) using supercritical carbon dioxide and its potential tissue engineering applications. Journal of Supercritical Fluids, 2013, 73, 1-9.	1.6	51
70	One-step alkyl-modification on boron nitride nanosheets for polypropylene nanocomposites with enhanced thermal conductivity and ultra-low dielectric loss. Composites Science and Technology, 2021, 208, 108756.	3.8	51
71	Synthesis of Janus POSS star polymer and exploring its compatibilization behavior for PLLA/PCL polymer blends. Polymer, 2018, 136, 84-91.	1.8	50
72	Fabrication of superhydrophilic and underwater superoleophobic membranes for fast and effective oil/water separation with excellent durability. Journal of Membrane Science, 2021, 620, 118898.	4.1	50

#	Article	IF	CITATIONS
73	Constructing stereocomplex structures at the interface for remarkably accelerating matrix crystallization and enhancing the mechanical properties of poly(<scp>l</scp> -lactide)/multi-walled carbon nanotube nanocomposites. Journal of Materials Chemistry A, 2015, 3, 13835-13847.	5.2	49
74	Mechanical properties of polypropylene composites reinforced by hydrolyzed and microfibrillated Kevlar fibers. Composites Science and Technology, 2018, 163, 141-150.	3.8	49
75	Effect of homopolymer poly(vinyl acetate) on compatibility and mechanical properties of poly(propylene carbonate)/poly(lactic acid) blends. EXPRESS Polymer Letters, 2012, 6, 860-870.	1.1	48
76	Toward environment-friendly composites of poly(propylene carbonate) reinforced with cellulose nanocrystals. Composites Science and Technology, 2013, 78, 63-68.	3.8	48
77	Effects of coupling agents on the impact fracture behaviors of T-ZnOw/PA6 composites. Composites Science and Technology, 2008, 68, 1338-1347.	3.8	47
78	Effect of annealing on the microstructure and mechanical properties of polypropylene with oriented shishâ€kebab structure. Polymer International, 2012, 61, 252-258.	1.6	47
79	Low-Temperature Sintering of Stereocomplex-Type Polylactide Nascent Powder: Effect of Crystallinity. Macromolecules, 2017, 50, 7611-7619.	2.2	47
80	Influences of Coagulation Conditions on the Structure and Properties of Regenerated Cellulose Filaments via Wet-Spinning in LiOH/Urea Solvent. ACS Sustainable Chemistry and Engineering, 2018, 6, 4056-4067.	3.2	47
81	A comparison study of high shear force and compatibilizer on the phase morphologies and properties of polypropylene/polylactide (PP/PLA) blends. Polymer, 2018, 154, 119-127.	1.8	47
82	Crystal morphology and tensile properties of LLDPE containing PP fibers as obtained via dynamic packing injection molding. Polymer, 2006, 47, 7115-7122.	1.8	45
83	Combined effect of interfacial strength and fiber orientation on mechanical performance of short Kevlar fiber reinforced olefin block copolymer. Composites Science and Technology, 2015, 108, 23-31.	3.8	45
84	Deep insight into the key role of carbon black self-networking in the formation of co-continuous-like morphology in polylactide/poly(ether)urethane blends. Polymer, 2016, 82, 11-21.	1.8	45
85	Polypropylene Injection Molded Part with Novel Macroscopic Bamboo-like Bionic Structure. Journal of Physical Chemistry B, 2010, 114, 9994-10001.	1.2	44
86	Preparation of Polylactide/Poly(ether)urethane Blends with Excellent Electro-actuated Shape Memory via Incorporating Carbon Black and Carbon Nanotubes Hybrids Fillers. Chinese Journal of Polymer Science (English Edition), 2018, 36, 1175-1186.	2.0	44
87	Ductile-brittle-transition phenomenon in polypropylene/ethylene-propylene-diene rubber blends obtained by dynamic packing injection molding: A new understanding of the rubber-toughening mechanism. Journal of Polymer Science, Part B: Polymer Physics, 2002, 40, 2086-2097.	2.4	42
88	Effects of nucleating agents on microstructure and fracture toughness of poly(propylene)/ethyleneâ€propyleneâ€diene terpolymer blends. Journal of Polymer Science, Part B: Polymer Physics, 2009, 47, 46-59.	2.4	42
89	Exploring temperature dependence of the toughening behavior of β-nucleated impact polypropylene copolymer. Polymer, 2012, 53, 1783-1790.	1.8	42

Property reinforcement of poly(propylene carbonate) by simultaneous incorporation of poly(lactic) Tj ETQq0 0 0 rg $\frac{37}{42}$ /Overlock 10 Tf 50

#	Article	IF	CITATIONS
91	Matrix crystallization induced simultaneous enhancement of electrical conductivity and mechanical performance in poly(l-lactide)/multiwalled carbon nanotubes (PLLA/MWCNTs) nanocomposites. Composites Science and Technology, 2014, 102, 20-27.	3.8	42
92	Toward High-Performance Poly(<scp>l</scp> -lactide) Fibers via Tailoring Crystallization with the Aid of Fibrillar Nucleating Agent. ACS Sustainable Chemistry and Engineering, 2016, 4, 3939-3947.	3.2	41
93	Impact toughness of polypropylene/glass fiber composites: Interplay between intrinsic toughening and extrinsic toughening. Composites Part B: Engineering, 2016, 92, 413-419.	5.9	41
94	Design of high-performance poly(l-lactide)/elastomer blends through anchoring carbon nanotubes at the interface with the aid of stereocomplex crystallization. Polymer, 2017, 108, 38-49.	1.8	41
95	Mechanically reinforced chitosan/cellulose nanocrystals composites with good transparency and biocompatibility. Chinese Journal of Polymer Science (English Edition), 2015, 33, 61-69.	2.0	40
96	Nonisothermal crystallization behaviors of polypropylene with $\hat{1}\pm/\hat{1}^2$ nucleating agents. Journal of Polymer Science, Part B: Polymer Physics, 2008, 46, 1853-1867.	2.4	39
97	Achieving all-polylactide fibers with significantly enhanced heat resistance and tensile strength via in situ formation of nanofibrilized stereocomplex polylactide. Polymer, 2019, 166, 13-20.	1.8	39
98	Spectroscopic Evidence of Melting of Ordered Structures in the Aged Glassy Poly(<scp>l</scp> -lactide). Macromolecules, 2010, 43, 1702-1705.	2.2	38
99	Formation of new electric double percolation via carbon black induced co-continuous like morphology. RSC Advances, 2014, 4, 37193.	1.7	38
100	Morphology and internal structure control over PLA microspheres by compounding PLLA and PDLA and entry and effects on drug release behavior. Colloids and Surfaces B: Biointerfaces, 2018, 172, 105-112.	2.5	38
101	Epitaxy growth and directed crystallization of high-density polyethylene in the oriented blends with isotactic polypropylene. Polymer, 2005, 46, 5258-5267.	1.8	37
102	Effect of nucleating agent on the brittle–ductile transition behavior of polypropylene/ethylene–octene copolymer blends. Journal of Polymer Science, Part B: Polymer Physics, 2008, 46, 577-588.	2.4	37
103	Transcrystalline formation and properties of polypropylene on the surface of ramie fiber as induced by shear or dopamine modification. Polymer, 2014, 55, 3045-3053.	1.8	37
104	Progresses in Manufacturing Techniques of Lithiumâ€lon Battery Separators in China. Chinese Journal of Chemistry, 2019, 37, 1207-1215.	2.6	37
105	Origin of various lamellar orientations in high-density polyethylene/isotactic polypropylene blends achieved via dynamic packing injection molding: bulk crystallization vs. epitaxy. Polymer, 2005, 46, 819-825.	1.8	36
106	Annealing-Induced Oriented Crystallization and Its Influence on the Mechanical Responses in the Melt-Spun Monofilament of Poly(<scp>l</scp> -lactide). Macromolecules, 2010, 43, 1156-1158.	2.2	36
107	Shear-induced epitaxial crystallization in injection-molded bars of high-density polyethylene/isotactic polypropylene blends. Polymer, 2007, 48, 4529-4536.	1.8	35
108	Shear enhanced interfacial interaction between carbon nanotubes and polyethylene and formation of nanohybrid shish–kebabs. Polymer, 2008, 49, 4925-4929.	1.8	35

#	Article	IF	CITATIONS
109	Unique clay orientation in the injection-molded bar of isotactic polypropylene/clay nanocomposite. Polymer, 2006, 47, 7103-7110.	1.8	34
110	Confine Clay in an Alternating Multilayered Structure through Injection Molding: A Simple and Efficient Route to Improve Barrier Performance of Polymeric Materials. ACS Applied Materials & Interfaces, 2015, 7, 10178-10189.	4.0	34
111	Stereocomplex-type polylactide with remarkably enhanced melt-processability and electrical performance via incorporating multifunctional carbon black. Polymer, 2020, 188, 122136.	1.8	34
112	Largely enhanced energy density of polypropylene based nanocomposites via synergistic hybrid fillers and high shear extrusion assisted dispersion. Composites Part A: Applied Science and Manufacturing, 2019, 119, 134-144.	3.8	33
113	Orientation and Epitaxy in the Injection-Molded Bars of Linear Low-Density Polyethylene/Isotactic Polypropylene Blends: An Infrared Dichroism Measurement. Journal of Physical Chemistry B, 2009, 113, 7423-7429.	1.2	32
114	Towards polylactide/core-shell rubber blends with balanced stiffness and toughness via the formation of rubber particle network with the aid of stereocomplex crystallites. Polymer, 2018, 159, 23-31.	1.8	32
115	Largely improved toughness of polypropylene/long glass fiber composites by β-modification and annealing. Composites Science and Technology, 2014, 96, 56-62.	3.8	31
116	Strong and conductive double-network graphene/PVA gel. RSC Advances, 2014, 4, 39588.	1.7	31
117	A promising strategy for fabricating high-performance stereocomplex-type polylactide products via carbon nanotubes-assisted low-temperature sintering. Polymer, 2019, 162, 50-57.	1.8	30
118	Improved dielectric and energy storage properties of polypropylene by adding hybrid fillers and high-speed extrusion. Polymer, 2021, 214, 123348.	1.8	30
119	Hierarchy structure in injection molded polypropylene/ethylene–octane copolymer blends. Journal of Applied Polymer Science, 2007, 105, 2252-2259.	1.3	29
120	Enhancement of β-nucleated crystallization in polypropylene random copolymer via adding isotactic polypropylene. Polymer, 2012, 53, 4861-4870.	1.8	29
121	The combined effect of reactive and high-shear extrusion on the phase morphologies and properties of PLA/OBC/EGMA ternary blends. Polymer, 2019, 169, 66-73.	1.8	29
122	Effect of stretching on the mechanical properties in melt-spun poly(butylene) Tj ETQq0 0 0 rgBT /Overlock 10 Tf 383-392.	50 227 T 5.1	d (succinate)/i 28
123	Simultaneously reinforcing and toughening of polylactide/carbon fiber composites via adding small amount of soft poly(ether)urethane. Composites Science and Technology, 2016, 127, 54-61.	3.8	28
124	Manipulating the Filler Network Structure and Properties of Polylactide/Carbon Black Nanocomposites with the Aid of Stereocomplex Crystallites. Journal of Physical Chemistry C, 2018, 122, 4232-4240.	1.5	28
125	Annealing induced microstructure and fracture resistance changes in isotactic polypropylene/ethyleneâ€octene copolymer blends with and without βâ€phase nucleating agent. Journal of Polymer Science, Part B: Polymer Physics, 2010, 48, 2108-2120.	2.4	27
126	Effect of molecular weight on the properties of poly(butylene succinate). Chinese Journal of Polymer Science (English Edition), 2014, 32, 953-960.	2.0	27

#	Article	IF	CITATIONS
127	High mechanical reinforcing efficiency of layered poly(vinyl alcohol) – graphene oxide nanocomposites. Nanocomposites, 2015, 1, 89-95.	2.2	27
128	Synergetic effects of a matrix crystalline structure and chain mobility on the low temperature toughness of polypropylene/ethylene–octene copolymer blends. RSC Advances, 2015, 5, 54488-54496.	1.7	27
129	A generalizable strategy toward highly tough and heat-resistant stereocomplex-type polylactide/elastomer blends with substantially enhanced melt processability. Polymer, 2021, 224, 123736.	1.8	27
130	Facilitating the formation of nanohybrid shish kebab structure in helical polymer systems by using carbon nanotube bundles. Polymer, 2012, 53, 4553-4559.	1.8	26
131	In situ micro and nano fibrillar reinforced elastomer composites based on polypropylene (PP)/olefinic block copolymer (OBC). Composites Science and Technology, 2015, 115, 34-42.	3.8	26
132	Stereocomplex crystallites induce simultaneous enhancement in impact toughness and heat resistance of injection-molded polylactide/polyurethane blends. RSC Advances, 2016, 6, 17008-17015.	1.7	26
133	Stereocomplex-type polylactide with bimodal melting temperature distribution: Toward desirable melt-processability and thermomechanical performance. Polymer, 2019, 169, 21-28.	1.8	26
134	Facilely assess the soluble behaviour of the β-nucleating agent by gradient temperature field for the construction of heterogeneous crystalline-frameworks in iPP. Soft Matter, 2016, 12, 594-601.	1.2	25
135	Simultaneously improving toughness and UV-resistance of polylactide/titanium dioxide nanocomposites by adding poly(ether)urethane. Polymer Degradation and Stability, 2017, 143, 136-144.	2.7	25
136	Detecting crystallization structure evolution of polypropylene injectionâ€molded bar induced by nucleating agent. Polymer Engineering and Science, 2008, 48, 1532-1541.	1.5	24
137	Achieving excellent dispersion and electrical conductivity of olefin block copolymer/MWCNTs composites efficiently via high-shear processing. Polymer, 2017, 123, 65-72.	1.8	24
138	Pursuit of the correlation between yield strength and crystallinity in sintering-molded UHMWPE. Polymer, 2021, 215, 123352.	1.8	24
139	Shear-Induced Morphological Change in PP/LLDPE Blend. Macromolecular Rapid Communications, 2002, 23, 749-752.	2.0	23
140	Tensile fracture behaviors of T-ZnOw/polyamide 6 composites. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2009, 512, 109-116.	2.6	23
141	Tailor-Made Dispersion and Distribution of Stereocomplex Crystallites in Poly(<scp>l</scp> -lactide)/Elastomer Blends toward Largely Enhanced Crystallization Rate and Impact Toughness. Journal of Physical Chemistry B, 2017, 121, 6271-6279.	1.2	23
142	Nucleating agent induced impact fracture behavior change in PP/POE blend. Polymer Bulletin, 2009, 62, 405-419.	1.7	22
143	Toward all stereocomplex-type polylactide with outstanding melt stability and crystallizability via solid-state transesterification between enantiomeric poly(l-lactide) and poly(d-lactide). Polymer, 2020, 205, 122850.	1.8	22
144	The effect of cellulose molecular weight on internal structure and properties of regenerated cellulose fibers as spun from the alkali/urea aqueous system. Polymer, 2021, 215, 123379.	1.8	22

#	Article	IF	CITATIONS
145	A comparative study of polypropylene nucleated by individual and compounding nucleating agents. I. Melting and isothermal crystallization. Journal of Applied Polymer Science, 2009, 111, 1624-1637.	1.3	21
146	Observation of strong nano-effect via tuning distributed architecture of graphene oxide in poly(propylene carbonate). Nanotechnology, 2014, 25, 025702.	1.3	21
147	Enhanced mechanical properties of olefin block copolymer by adding a quaternary ammonium salt functionalized graphene oxide. RSC Advances, 2016, 6, 54785-54792.	1.7	21
148	Thermo-conductive phase change materials with binary fillers of core-shell-like distribution. Composites Part A: Applied Science and Manufacturing, 2021, 144, 106326.	3.8	21
149	Multishape and Temperature Memory Effects by Strong Physical Confinement in Poly(propylene) Tj ETQq1 1 0.78	34314 rgB1 1.2	- IOverlock
150	Microfibrillated cellulose reinforced bio-based poly(propylene carbonate) with dual-responsive shape memory properties. RSC Advances, 2016, 6, 7560-7567.	1.7	20
151	Effect of thermal annealing on crystal structure and properties of PLLA/PCL blend. Journal of Polymer Research, 2020, 27, 1.	1.2	20
152	The effect of filler permittivity on the dielectric properties of polymer-based composites. Composites Science and Technology, 2022, 222, 109342.	3.8	20
153	Adding EPDM Rubber Makes Poly(propylene) Brittle. Macromolecular Materials and Engineering, 2002, 287, 391.	1.7	19
154	Study on the β to α transformation of PP/POE blends with β-phase nucleating agent during the tensile deformation process. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2010, 527, 531-538.	2.6	19
155	Combined effects of stretching and nanofillers on the crystalline structure and mechanical properties of polypropylene and single-walled carbon nanotube composite fibers. Chinese Journal of Polymer Science (English Edition), 2014, 32, 245-254.	2.0	19
156	The effect of hard block content on the orientation and mechanical properties of olefin block copolymer films as obtained <i>via</i> melt stretching. RSC Advances, 2015, 5, 82535-82543.	1.7	19
157	Achieving a low electrical percolation threshold andÂsuperior mechanical performance in poly(<scp>l</scp> -lactide)/thermoplastic polyurethane/carbon nanotubes composites via tailoring phase morphology with the aid of stereocomplex crystallites. RSC Advances, 2017, 7, 11076-11084.	1.7	19
158	Optically transparent poly(methyl methacrylate) with largely enhanced mechanical and shape memory properties via in-situ formation of polylactide stereocomplex in the matrix. Polymer, 2017, 126, 231-239.	1.8	19
159	Low-temperature sintering of stereocomplex-type polylactide nascent powder: The role of optical purity in directing the chain interdiffusion and cocrystallization across the particle interfaces. Polymer, 2018, 150, 169-176.	1.8	19
160	High impact performance induced by a synergistic effect of heteroepitaxy and oriented layer-unoriented layer alternated structure in iPP/HDPE injection molded part. Polymer, 2019, 175, 206-214.	1.8	19
161	Mixing of Racemic Poly(L-lactide)/Poly(D-lactide) Blend with Miscible Poly(D,L-lactide): Toward All Stereocomplex-type Polylactide with Strikingly Enhanced SC Crystallizability. Chinese Journal of Polymer Science (English Edition), 2021, 39, 1470-1480.	2.0	19
162	Enhancing crystallization and mechanical properties of poly(lactic acid)/milled glass fiber composites via self-assembled nanoscale interfacial structures. Composites Part A: Applied Science and Manufacturing, 2019, 117, 219-229.	3.8	18

#	Article	IF	CITATIONS
163	Towards high-performance polypropylene and its random copolymer: Insight into toughening mechanism of supercritical carbon dioxide assisted annealing. Journal of Supercritical Fluids, 2014, 87, 83-92.	1.6	17
164	Morphology Evolution of Polymer Blends under Intense Shear During High Speed Thin-Wall Injection Molding. Journal of Physical Chemistry B, 2017, 121, 6257-6270.	1.2	17
165	Preparation of Polylactide Composite with Excellent Flame Retardance and Improved Mechanical Properties. Chinese Journal of Polymer Science (English Edition), 2018, 36, 1385-1393.	2.0	17
166	Simultaneous improvements of thermal stability and mechanical properties of poly(propylene) Tj ETQq0 0 0 rgBT / Science (English Edition), 2014, 32, 1724-1736.	Overlock 2.0	10 Tf 50 627 16
167	Effect of melting temperature on interfacial interaction and mechanical properties of polypropylene (PP) fiber reinforced olefin block copolymers (OBCs). RSC Advances, 2014, 4, 45234-45243.	1.7	16
168	Toward uniform pore-size distribution and high porosity of isotactic polypropylene microporous membrane by adding a small amount of ultrafine full-vulcanized powder rubber. Polymer, 2016, 103, 405-414.	1.8	16
169	Enhanced thermal conductivity and wear resistance of polytetrafluoroethylene via incorporating hexagonal boron nitride and alumina particles. Journal of Applied Polymer Science, 2022, 139, 51497.	1.3	16
170	Crystallization and melting behaviors of maleic anhydride grafted poly(propylene) nucleated by an aryl amide derivative. Journal of Thermal Analysis and Calorimetry, 2010, 99, 563-570.	2.0	15
171	Simultaneous enhancement of electrical conductivity and impact strength via formation of carbon blackâ€filler network in PP/EPDM Blends. Polymers for Advanced Technologies, 2011, 22, 857-862.	1.6	15
172	Synergistic effects of βâ€modification and impact polypropylene copolymer on brittleâ€ductile transition of polypropylene random copolymer. Journal of Applied Polymer Science, 2013, 129, 3613-3622.	1.3	15
173	The effect of DBP of carbon black on the dynamic self-assembly in a polymer melt. RSC Advances, 2016, 6, 24843-24852.	1.7	15
174	Recent Progress on the Confinement, Assembly, and Relaxation of Inorganic Functional Fillers in Polymer Matrix during Processing. Macromolecular Rapid Communications, 2017, 38, 1700444.	2.0	15
175	Manipulating the Strength–Toughness Balance of Poly(<scp>l</scp> -lactide) (PLLA) via Introducing Ductile Poly(lµ-caprolactone) (PCL) and Strong Shear Flow. Industrial & Engineering Chemistry Research, 2020, 59, 1000-1009.	1.8	15
176	Low-temperature sintering of stereocomplex-type polylactide nascent powder: The role of poly(methyl) Tj ETQq0 (210, 123031.) 0 rgBT /(1.8	Overlock 10 ⁻ 15
177	Fracture studies of poly(propylene)/elastomer blend with β-form nucleating agent. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2009, 513-514, 22-31.	2.6	14
178	High speed injection molding of high density polyethylene — Effects of injection speed on structure and properties. Chinese Journal of Polymer Science (English Edition), 2011, 29, 456-464.	2.0	14
179	Flow-induced epitaxial growth of high density polyethylene in its blends with low crystallizable polypropylene copolymer. Polymer, 2011, 52, 3655-3660.	1.8	14
180	Tunable liquid sensing performance of conducting carbon nanotube–polyethylene composites with a porous segregated structure. RSC Advances, 2013, 3, 19802.	1.7	14

#	Article	IF	CITATIONS
181	The different effect of reduced graphene oxide and graphene oxide on the performance of chitosan by using homogenous fillers. RSC Advances, 2016, 6, 34153-34158.	1.7	14
182	Lowâ€Temperature Sintering of Stereocomplexâ€Type Polylactide Nascent Powder: From Compression Molding to Injection Molding. Macromolecular Materials and Engineering, 2018, 303, 1800178.	1.7	14
183	Highly thermo-conductive but electrically insulating filament via a volume-confinement self-assembled strategy for thermoelectric wearables. Chemical Engineering Journal, 2021, 421, 127764.	6.6	14
184	Toughening of Poly(L-Lactic Acid) by Annealing: The Effect of Crystal Morphologies and Modifications. Journal of Macromolecular Science - Physics, 2012, 51, 184-196.	0.4	13
185	Combined effect of βâ€nucleating agent and processing melt temperature on the toughness of impact polypropylene copolymer. Polymer International, 2013, 62, 172-178.	1.6	13
186	Preparation and Properties of Ultrathin Flexible Expanded Graphite Film via Adding Natural Rubber. Chinese Journal of Polymer Science (English Edition), 2019, 37, 806-814.	2.0	13
187	Synthesis and phase behavior of polyurethanes end-capped with fluorinated phosphatidylcholine head groups. Chinese Journal of Polymer Science (English Edition), 2011, 29, 615-626.	2.0	12
188	Preparation and properties of poly(ethylene terephthalate)/inorganic whiskers composites. Journal of Applied Polymer Science, 2011, 121, 604-611.	1.3	12
189	Stretching induced interfacial crystallization and property enhancement of poly(l-lactide)/single-walled carbon nanotubes fibers. Composites Science and Technology, 2013, 83, 47-53.	3.8	12
190	Improving Impact Toughness of Polylactide/Ethylene-co-vinyl-acetate Blends via Adding Fumed Silica Nanoparticles: Effects of Specific Surface Area-dependent Interfacial Selective Distribution of Silica. Chinese Journal of Polymer Science (English Edition), 2021, 39, 1040-1049.	2.0	12
191	Tailoring toughness of injection molded bar of polypropylene random copolymer through processing melt temperature. Polymer International, 2011, 60, 1705-1714.	1.6	11
192	Exploring interfacial enhancement in polystyrene/multiwalled carbon nanotube monofilament induced by stretching. Composites Part A: Applied Science and Manufacturing, 2014, 61, 84-90.	3.8	11
193	Processing condition induced structural evolution in the alternating multi-layer structure during high speed thin-wall injection molding. Polymer, 2016, 99, 49-58.	1.8	11
194	Morphology and mechanical properties of poly(ethyleneoctene) copolymers obtained by dynamic packing injection molding. Chinese Journal of Polymer Science (English Edition), 2012, 30, 603-612.	2.0	10
195	Significant reinforcement of poly(propylene carbonate): Nanostructured polymer composites of poly(propylene carbonate)/poly(methyl methacrylate) via a supercritical carbon dioxide route. Journal of Supercritical Fluids, 2013, 82, 200-205.	1.6	10
196	Brittle–ductile transition behavior of poly(ethylene terephthalate)/poly(ethylene-octene) blend: the roles of compatibility and test temperature. Journal of Materials Science, 2014, 49, 1794-1804.	1.7	10
197	Reduction of graphene oxide with the presence of polypropylene micro-latex for facile preparation of polypropylene/graphene nanosheet composites. Colloid and Polymer Science, 2015, 293, 1495-1503.	1.0	10
198	Transcrystallization of poly(<scp>l</scp> -lactic acid) on the surface of reduced graphene oxide fibers. RSC Advances, 2016, 6, 100090-100097.	1.7	10

#	Article	IF	CITATIONS
199	<i>para</i> -Aramid Nanofiber Membranes for High-Performance and Multifunctional Materials. ACS Applied Nano Materials, 2022, 5, 747-758.	2.4	10
200	Size distribution and anisotropy of the minor phase droplets in polypropylene/ethylene-octene copolymer blends: Effects of shear and component miscibility. Chinese Journal of Polymer Science (English Edition), 2014, 32, 9-20.	2.0	9
201	Toughening of polycarbonate through reactive melt blending: Effect of hydroxyl content and viscosity of hydroxyl-terminated polydimethysiloxane. Chinese Journal of Polymer Science (English) Tj ETQq1 1	0.7824014	rgB ⊅ /Overloc
202	Polymorphic structures phase diagram of shear-induced isotactic polypropylene/carbon fiber cylindrites. Materials and Design, 2018, 150, 40-48.	3.3	9
203	Remarkably Improved Impact Fracture Toughness of Isotactic Polypropylene via Combining the Effects of Shear Layer-Spherulites Layer Alternated Structure and Thermal Annealing. Industrial & Engineering Chemistry Research, 2019, 58, 15069-15078.	1.8	9
204	Importance of Lowâ€Temperature Meltâ€Mixing on the Construction of Stereocomplex Crystallites with Superior Nucleation Efficiency in Asymmetric Poly(<scp>l</scp> â€lactide)/Poly(<scp>d</scp> â€lactide) Blends. Macromolecular Materials and Engineering, 2021, 306, 2100091.	1.7	9
205	Molecular dynamics studies of interfacial crystallization behaviors in polyethylene/carbon nanotube composites. RSC Advances, 2015, 5, 102219-102227.	1.7	8
206	Largely enhanced mechanical properties and heat distortion temperature of β-nucleated isotactic polypropylene by adding ultrafine full-vulcanized powdered rubber. RSC Advances, 2015, 5, 62797-62804.	1.7	8
207	Largely reinforced polyurethane via simultaneous incorporation of poly(lactic acid) and multiwalled carbon nanotubes. RSC Advances, 2015, 5, 30912-30919.	1.7	8
208	The effect of high-temperature annealing on thermal properties and morphology of polyethylene pipes prepared by rotational shear. Polymer, 2020, 204, 122770.	1.8	8
209	Substantially Enhanced Stereocomplex Crystallization of Poly(L-lactide)/Poly(D-lactide) Blends by the Formation of Multi-Arm Stereo-Block Copolymers. Crystals, 2022, 12, 210.	1.0	8
210	In situ formation of polypropylene (PP) fibrils in the olefinic block copolymer (OBC): effect of viscosity ratio and OBC block architecture. RSC Advances, 2015, 5, 85442-85445.	1.7	7
211	Significant toughness improvement in iPP/PLLA/EGMA blend by introducing dicumyl peroxide as the morphology governor. Colloid and Polymer Science, 2018, 296, 31-39.	1.0	7
212	Addressing the challenge of fabricating a high content regenerated cellulose/nanomaterial composite: the magical effect of urea. Green Chemistry, 2020, 22, 4121-4127.	4.6	7
213	Stereocomplex Crystallization Induced Significant Improvement in Transparency and Stiffness–Toughness Performance of Core‧hell Rubber Nanoparticles Toughened Poly(<scp>l</scp> â€lactide) Blends. Macromolecular Materials and Engineering, 2021, 306, 2100021.	1.7	7
214	TOUGHENING AND STIFFENING EFFECTS OF T-ZnOw WHISKERS ON POLYSTYRENE. Chinese Journal of Polymer Science (English Edition), 2008, 26, 285.	2.0	7
215	Thermal annealing-induced superior toughness in polypropylene/poly(ethylene glycol) blend and its structural origin. Polymer Engineering and Science, 2013, 53, 2053-2060.	1.5	6
216	The influence of blend composition and filler on the microstructure, crystallization, and mechanical behavior of polymer blends with multilayered structures. Nanocomposites, 2018, 4, 178-189.	2.2	6

#	Article	IF	CITATIONS
217	Controlling the selective distribution of hydrophilic silica nanoparticles in polylactide/ethylene-co-vinyl-acetate blends via tailoring the OH surface concentration of silica. Composites Communications, 2021, 25, 100737.	3.3	6
218	Effect of supercritical carbon dioxide treatment on structure and mechanical properties of β-nucleated polypropylene processed at different temperatures. Polymer Testing, 2017, 60, 211-219.	2.3	5
219	A facile melt coating approach to fabricate macroscopic segregated polymer/carbon nanotube conductive composites with balanced properties. Polymer Composites, 2018, 39, 841-847.	2.3	5
220	Effect of functionalized SWCNTs on microstructure of PPâ€∢i>gâ€MA/OMMT/f‣WCNTs nanocomposite. Journal of Applied Polymer Science, 2009, 112, 2413-2424.	1.3	4
221	Alternating multilayer structure of polyethylene/polypropylene blends obtained through injection molding. Journal of Applied Polymer Science, 2012, 124, 4452-4456.	1.3	3
222	Comparison of the toughening behavior for poly(ethylene terephthalate) with spherulitic or ellipsoid elastomer-particles. Journal of Polymer Research, 2014, 21, 1.	1.2	3
223	Manipulating Matrix Crystallization and Impact Toughness of Polylactide/Elastomer Blends via Tailoring Size and Packing Density of Stereocomplex Crystallites Formed at the Interface. Macromolecular Materials and Engineering, 2022, 307, 2100698.	1.7	3
224	Enhanced fracture energy during deformation through the construction of an alternating multilayered structure for polyolefin blends. Polymer International, 2018, 67, 1094-1102.	1.6	2
225	PREPARATION AND MECHANICAL PROPERTIES OF T-ZnOw/PS COMPOSITES. Chinese Journal of Polymer Science (English Edition), 2009, 27, 173.	2.0	2
226	The effect of annealing time on morphology, mechanical properties, and thermal conductivity of HDPE pipes produced by rotational shear. Materials Today Communications, 2022, 31, 103321.	0.9	1
227	The processing of alternating multi-layered functional polymer composites through high speed thin-wall injection molding. AIP Conference Proceedings, 2019, , .	0.3	0