Mega Kar

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9540040/publications.pdf

Version: 2024-02-01

218677 330143 2,674 39 26 37 citations h-index g-index papers 58 58 58 4289 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	lonic liquids for renewable thermal energy storage – a perspective. Green Chemistry, 2022, 24, 102-117.	9.0	34
2	Emergence of nonaqueous electrolytes for rechargeable zinc batteries. Current Opinion in Green and Sustainable Chemistry, 2021, 28, 100426.	5.9	8
3	Simple route to lithium dendrite prevention for long cycle-life lithium metal batteries. Applied Materials Today, 2021, 23, 101062.	4.3	8
4	Guanidinium Organic Salts as Phaseâ€Change Materials for Renewable Energy Storage. ChemSusChem, 2021, 14, 2757-2762.	6.8	14
5	Lithium Borate Ester Salts for Electrolyte Application in Nextâ€Generation High Voltage Lithium Batteries. Advanced Energy Materials, 2021, 11, 2101422.	19.5	34
6	Probing the secrets of hydrogen bonding in organic salt phase change materials: the origins of a high enthalpy of fusion. Materials Advances, 2021, 2, 7650-7661.	5.4	13
7	Pyrazolium Phaseâ€Change Materials for Solarâ€Thermal Energy Storage. ChemSusChem, 2020, 13, 159-164.	6.8	29
8	Role of Hydrogen Bonding in Phase Change Materials. Crystal Growth and Design, 2020, 20, 1285-1291.	3.0	24
9	Influence of ion structure on thermal runaway behaviour of aprotic and protic ionic liquids. Chemical Communications, 2020, 56, 11819-11822.	4.1	2
10	Lewis Acid–Base Interactions between Polysulfides and Boehmite Enables Stable Roomâ€√emperature Sodium–Sulfur Batteries. Advanced Functional Materials, 2020, 30, 2005669.	14.9	40
11	Ultrathin Lithium Aluminate Nanoflake-Inlaid Sulfur as a Cathode Material for Lithium–Sulfur Batteries with High Areal Capacity. ACS Applied Energy Materials, 2020, 3, 5637-5645.	5.1	10
12	Ein Hybridâ€Anion für ionische Flüssigkeiten und Batterieelektrolytanwendungen: Halb Triflamid, halb Carbonat. Angewandte Chemie, 2019, 131, 4435-4439.	2.0	0
13	A Hybrid Anion for Ionic Liquid and Battery Electrolyte Applications: Half Triflamide, Half Carbonate. Angewandte Chemie - International Edition, 2019, 58, 4390-4394.	13.8	16
14	Novel and versatile room temperature ionic liquids for energy storage. Energy and Environmental Science, 2019, 12, 566-571.	30.8	75
15	Mg Cathode Materials and Electrolytes for Rechargeable Mg Batteries: A Review. Batteries and Supercaps, 2019, 2, 115-127.	4.7	102
16	Kenneth R. Seddon – A Rock Star of Ionic Liquids. Australian Journal of Chemistry, 2019, 72, 1.	0.9	0
17	Three-Dimensionally Reinforced Freestanding Cathode for High-Energy Room-Temperature Sodium–Sulfur Batteries. ACS Applied Materials & Interfaces, 2019, 11, 14101-14109.	8.0	55
18	Ionic Liquids – Further Progress on the Fundamental Issues. Australian Journal of Chemistry, 2019, 72, 3.	0.9	52

#	Article	IF	Citations
19	lonic liquid/tetraglyme hybrid Mg[TFSI]2 electrolytes for rechargeable MgÂbatteries. Green Energy and Environment, 2019, 4, 146-153.	8.7	33
20	The effect of cation chemistry on physicochemical behaviour of superconcentrated NaFSI based ionic liquid electrolytes and the implications for Na battery performance. Electrochimica Acta, 2018, 268, 94-100.	5.2	31
21	Supported Ionic Liquid Gel Membrane Electrolytes for Flexible Supercapacitors. Advanced Energy Materials, 2018, 8, 1702702.	19.5	90
22	Stability enhancing ionic liquid hybrid electrolyte for NVP@C cathode based sodium batteries. Sustainable Energy and Fuels, 2018, 2, 566-576.	4.9	37
23	lonic liquid electrolytes supporting high energy density in sodium-ion batteries based on sodium vanadium phosphate composites. Chemical Communications, 2018, 54, 3500-3503.	4.1	31
24	Electrochemical cycling of Mg in Mg[TFSI] 2 /tetraglyme electrolytes. Electrochemistry Communications, 2017, 78, 29-32.	4.7	64
25	Enhanced CO ₂ uptake by intramolecular proton transfer reactions in amino-functionalized pyridine-based ILs. Chemical Communications, 2017, 53, 5950-5953.	4.1	31
26	Electro-synthesis of ammonia from nitrogen at ambient temperature and pressure in ionic liquids. Energy and Environmental Science, 2017, 10, 2516-2520.	30.8	497
27	Effect of mixed anions on the physicochemical properties of a sodium containing alkoxyammonium ionic liquid electrolyte. Physical Chemistry Chemical Physics, 2017, 19, 17461-17468.	2.8	45
28	Task-specific thioglycolate ionic liquids for heavy metal extraction: Synthesis, extraction efficacies and recycling properties. Journal of Hazardous Materials, 2017, 324, 241-249.	12.4	82
29	New dimensions in salt–solvent mixtures: a 4th evolution of ionic liquids. Faraday Discussions, 2017, 206, 9-28.	3.2	96
30	Measure and control: molecular management is a key to the Sustainocene!. Green Chemistry, 2016, 18, 5689-5692.	9.0	7
31	lon Dynamics in a Mixedâ€Cation Alkoxyâ€Ammonium Ionic Liquid Electrolyte for Sodium Device Applications. ChemPhysChem, 2016, 17, 3187-3195.	2.1	43
32	lonic liquids and their solid-state analogues as materials for energy generation and storage. Nature Reviews Materials, 2016, 1, .	48.7	511
33	Stable zinc cycling in novel alkoxy-ammonium based ionic liquid electrolytes. Electrochimica Acta, 2016, 188, 461-471.	5.2	48
34	lonic liquid electrolytes for reversible magnesium electrochemistry. Chemical Communications, 2016, 52, 4033-4036.	4.1	61
35	Reduction of oxygen in a trialkoxy ammonium-based ionic liquid and the role of water. Electrochimica Acta, 2016, 196, 727-734.	5.2	8
36	Ionic liquid electrolytes as a platform for rechargeable metal–air batteries: a perspective. Physical Chemistry Chemical Physics, 2014, 16, 18658-18674.	2.8	128

#	Article	IF	CITATIONS
37	Exploring zinc coordination in novel zinc battery electrolytes. Physical Chemistry Chemical Physics, 2014, 16, 10816.	2.8	27
38	Chelating ionic liquids for reversible zinc electrochemistry. Physical Chemistry Chemical Physics, 2013, 15, 7191.	2.8	76
39	Lithium doped N,N-dimethyl pyrrolidinium tetrafluoroborate organic ionic plastic crystal electrolytes for solid state lithium batteries. Journal of Materials Chemistry, 2011, 21, 10171.	6.7	69