Borja Belda Palazón

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9539370/publications.pdf

Version: 2024-02-01

23 papers 1,093 citations

567281 15 h-index 21 g-index

25 all docs

25 docs citations

25 times ranked 1642 citing authors

#	Article	IF	CITATIONS
1	FYVE1/FREE1 Interacts with the PYL4 ABA Receptor and Mediates Its Delivery to the Vacuolar Degradation Pathway. Plant Cell, 2016, 28, 2291-2311.	6.6	129
2	A dual function of SnRK2 kinases in the regulation of SnRK1 and plant growth. Nature Plants, 2020, 6, 1345-1353.	9.3	122
3	Aminopropyltransferases Involved in Polyamine Biosynthesis Localize Preferentially in the Nucleus of Plant Cells. PLoS ONE, 2012, 7, e46907.	2.5	106
4	Ubiquitin Ligases RGLG1 and RGLG5 Regulate Abscisic Acid Signaling by Controlling the Turnover of Phosphatase PP2CA. Plant Cell, 2016, 28, 2178-2196.	6.6	100
5	A Direct Link between Abscisic Acid Sensing and the Chromatin-Remodeling ATPase BRAHMA via Core ABA Signaling Pathway Components. Molecular Plant, 2016, 9, 136-147.	8.3	100
6	ESCRT-I Component VPS23A Affects ABA Signaling by Recognizing ABA Receptors for Endosomal Degradation. Molecular Plant, 2016, 9, 1570-1582.	8.3	87
7	Calcium-dependent oligomerization of CAR proteins at cell membrane modulates ABA signaling. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, E396-405.	7.1	72
8	<scp>ABA</scp> inhibits myristoylation and induces shuttling of the <scp>RGLG</scp> 1 E3 ligase to promote nuclear degradation of <scp>PP</scp> 2 <scp>CA</scp> . Plant Journal, 2019, 98, 813-825.	5.7	59
9	The MATH-BTB BPM3 and BPM5 subunits of Cullin3-RING E3 ubiquitin ligases target PP2CA and other clade A PP2Cs for degradation. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 15725-15734.	7.1	56
10	PYL8 mediates ABA perception in the root through non-cell-autonomous and ligand-stabilization–based mechanisms. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E11857-E11863.	7.1	46
11	Arabidopsis ALIX Regulates Stomatal Aperture and Turnover of Abscisic Acid Receptors. Plant Cell, 2019, 31, 2411-2429.	6.6	40
12	RBR-Type E3 Ligases and the Ubiquitin-Conjugating Enzyme UBC26 Regulate Abscisic Acid Receptor Levels and Signaling. Plant Physiology, 2020, 182, 1723-1742.	4.8	33
13	Citrus exocortis viroid causes ribosomal stress in tomato plants. Nucleic Acids Research, 2019, 47, 8649-8661.	14.5	32
14	ABA represses TOR and root meristem activity through nuclear exit of the SnRK1 kinase. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	7.1	29
15	Fertility and Polarized Cell Growth Depends on eIF5A for Translation of Polyproline-Rich Formins in <i>Saccharomyces cerevisiae</i> . Genetics, 2014, 197, 1191-1200.	2.9	24
16	Polyamines as Quality Control Metabolites Operating at the Post-Transcriptional Level. Plants, 2019, 8, 109.	3.5	16
17	Relevance of the Axis Spermidine/eIF5A for Plant Growth and Development. Frontiers in Plant Science, 2016, 7, 245.	3.6	14
18	Biochemical quantitation of the eIF5A hypusination in Arabidopsis thaliana uncovers ABA-dependent regulation. Frontiers in Plant Science, 2014, 5, 202.	3.6	12

#	Article	IF	CITATIONS
19	PYL8 ABA receptors of <i>Phoenix dactylifera </i> play a crucial role in response to abiotic stress and are stabilized by ABA. Journal of Experimental Botany, 2021, 72, 757-774.	4.8	10
20	Quantitation of Protein Translation Rate In Vivo with Bioorthogonal Click-Chemistry. Methods in Molecular Biology, 2016, 1449, 369-382.	0.9	3
21	Degradation of Abscisic Acid Receptors Through the Endosomal Pathway. Methods in Molecular Biology, 2020, 2177, 35-48.	0.9	2
22	Potential Role of Small RNAs during Stress in Plants. , 2013, , 85-107.		0
23	Microscopic Imaging of of. Methods in Molecular Biology, 2022, 2462, 59-69.	0.9	0