Eric G Cosio

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/953933/publications.pdf Version: 2024-02-01

FRIC C COSIO

#	Article	IF	CITATIONS
1	Global variability in leaf respiration in relation to climate, plant functional types and leaf traits. New Phytologist, 2015, 206, 614-636.	3.5	350
2	Elicitors of Plant Defense Responses. International Review of Cytology, 1994, , 1-36.	6.2	284
3	High-affinity binding of fungal beta-glucan fragments to soybean (Glycine max L.) microsomal fractions and protoplasts. FEBS Journal, 1988, 175, 309-315.	0.2	109
4	High-affinity binding of a synthetic heptaglucoside and fungal glucan phytoalexin elicitors to soybean membranes. FEBS Letters, 1990, 271, 223-226.	1.3	102
5	Identification of a high-affinity binding protein for a hepta-beta-glucoside phytoalexin elicitor in soybean. FEBS Journal, 1992, 204, 1115-1123.	0.2	92
6	Leafâ€level photosynthetic capacity in lowland Amazonian and highâ€elevation Andean tropical moist forests of Peru. New Phytologist, 2017, 214, 1002-1018.	3.5	89
7	Bioactive maca (Lepidium meyenii) alkamides are a result of traditional Andean postharvest drying practices. Phytochemistry, 2015, 116, 138-148.	1.4	74
8	Solubilization of soybean membrane binding sites for fungal β-glucans that elicit phytoalexin accumulation. FEBS Letters, 1990, 264, 235-238.	1.3	56
9	Affinity purification and characterization of a binding protein for a hepta-β-glucoside. Phytoalexin elicitor in soybean. Phytochemistry, 1993, 32, 543-550.	1.4	53
10	High-affinity binding of fungal ?-glucan elicitors to cell membranes of species of the plant family Fabaceae. Planta, 1996, 200, 92.	1.6	53
11	Elicitor-binding proteins and signal transduction in the activation of a phytoalexin defense response. Canadian Journal of Botany, 1995, 73, 506-510.	1.2	46
12	Acifluorfen-Induced Isoflavonoids and Enzymes of Their Biosynthesis in Mature Soybean Leaves. Plant Physiology, 1985, 78, 14-19.	2.3	43
13	Release of highly elicitor-active glucans by germinating zoospores of Phytophthora megasperma f. sp. glycinea. Planta, 1992, 188, 498-505.	1.6	33
14	Scaling leaf respiration with nitrogen and phosphorus in tropical forests across two continents. New Phytologist, 2017, 214, 1064-1077.	3.5	30
15	Physiological effects of short acute UVB treatments in Chenopodium quinoa Willd. Scientific Reports, 2018, 8, 371.	1.6	30
16	Kaempferol Glycosides and Enzymes of Flavonol Biosynthesis in Leaves of a Soybean Strain with Low Photosynthetic Rates. Plant Physiology, 1984, 74, 877-881.	2.3	27
17	Production of Antibiotic Thiarubrines by a Crown gall Tumor Line of Chaenactis douglasii. Journal of Plant Physiology, 1986, 124, 155-164.	1.6	27
18	Detection and Imaging of the Plant Pathogen Response by Nearâ€Infrared Fluorescent Polyphenol Sensors. Angewandte Chemie - International Edition, 2022, 61, .	7.2	27

Eric G Cosio

#	Article	IF	CITATIONS
19	Leaf age effects on the spectral predictability of leaf traits in Amazonian canopy trees. Science of the Total Environment, 2019, 666, 1301-1315.	3.9	22
20	Isolation and photosynthetic characteristics of mesophyll cells from developing leaves of soybean. Physiologia Plantarum, 1983, 59, 595-600.	2.6	17
21	Physiological responses of maca (Lepidium meyenii Walp.) plants to UV radiation in its high-altitude mountain ecosystem. Scientific Reports, 2020, 10, 2654.	1.6	17
22	Editorial: Tropical Montane Forests in a Changing Environment. Frontiers in Plant Science, 2021, 12, 712748.	1.7	14
23	Fluvial carbon export from a lowland Amazonian rainforest in relation to atmospheric fluxes. Journal of Geophysical Research G: Biogeosciences, 2016, 121, 3001-3018.	1.3	13
24	Plantâ€Inhabiting Ant Utilizes Chemical Cues for Host Discrimination. Biotropica, 2012, 44, 246-253.	0.8	11
25	Partial purification of a GTP-insensitive (1 → 3)-β-glucan synthase fromPhytophthora sojae. FEBS Letters, 1998, 433, 191-195.	1.3	10
26	Glucosinolate catabolism during postharvest drying determines the ratio of bioactive macamides to deaminated benzenoids in Lepidium meyenii (maca) root flour. Phytochemistry, 2020, 179, 112502.	1.4	10
27	Endogenous Growth Regulator Levels and Polyacetylene Accumulation in Crown Gall Tumor Lines of Chaenactis douglasii. Journal of Plant Physiology, 1987, 129, 1-11.	1.6	6
28	Detection and imaging of the plant pathogen response by near infrared fluorescent polyphenol sensors. Angewandte Chemie, 0, , .	1.6	2
29	Elicitation of Phytoalexin Synthesis in Soybean (Glycine Max) by A Fungal Pathogen and a Fungal ß-Glucan. NATO ASI Series Series H, Cell Biology, 1989, , 203-210.	0.5	1
30	Frontispiece: Detection and Imaging of the Plant Pathogen Response by Nearâ€Infrared Fluorescent Polyphenol Sensors. Angewandte Chemie - International Edition, 2022, 61, .	7.2	1
31	Frontispiz: Detektion und Visualisierung der Pflanzenâ€Pathogenâ€Response durch Nahâ€Infrarotâ€fluoreszente Polyphenolsensoren. Angewandte Chemie, 2022, 134, .	1.6	0