
Vicki J Keast

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9539075/publications.pdf Version: 2024-02-01

VICKI | KEAST

#	Article	IF	CITATIONS
1	Corrosion processes of silver nanoparticles. Applied Nanoscience (Switzerland), 2022, 12, 1859-1868.	1.6	13
2	Gender Bias in New South Wales Higher School Certificate (HSC) Physics. Australian Journal of Education, 2022, 66, 26-39.	0.9	3
3	Atmospheric Corrosion of Silver and Silver Nanoparticles. Corrosion and Materials Degradation, 2022, 3, 221-234.	1.0	10
4	Single-Walled Carbon Nanotubes as One-Dimensional Scattering Surfaces for Measuring Point Spread Functions and Performance of Tip-Enhanced Raman Spectroscopy Probes. ACS Applied Nano Materials, 2022, 5, 9024-9033.	2.4	3
5	Theoretical and experimental investigation of the W-Al-B and Mo-Al-B systems to approach bulk WAlB synthesis. Journal of the European Ceramic Society, 2021, 41, 1859-1868.	2.8	14
6	Plasmonic enhancement of aqueous processed organic photovoltaics. RSC Advances, 2021, 11, 19000-19011.	1.7	3
7	Intermediate Phases and Reaction Kinetics of the Furnace-Assisted Synthesis of Sodium Tungsten Bronze Nanoparticles. Journal of Physical Chemistry C, 2021, 125, 8185-8194.	1.5	2
8	Crystal structures, electrical properties, and electron energy-loss spectroscopy of the sodium and potassium tetragonal tungsten bronzes. Journal of Alloys and Compounds, 2021, 868, 159200.	2.8	10
9	The Quest for Zero Loss: Unconventional Materials for Plasmonics. Advanced Materials, 2020, 32, e1904532.	11.1	22
10	Chemical homogeneity and optical properties of individual sodium tungsten bronze nanocubes. Micron, 2020, 139, 102926.	1.1	4
11	Na x WO3 + TiO2 nanocomposites as plasmonic photocatalysts for the degradation of organic dyes. Nano Express, 2020, 1, 020008.	1.2	4
12	The Role of Simulation of Valence Electron Energy Loss Spectroscopy (EELS) for Understanding Electronic Structure and Optical Properties of Materials. Microscopy and Microanalysis, 2019, 25, 2286-2287.	0.2	0
13	Plasmon Responses in the Sodium Tungsten Bronzes. Plasmonics, 2018, 13, 437-444.	1.8	28
14	Bulk scale fabrication of sodium tungsten bronze nanoparticles for applications in plasmonics. Nanotechnology, 2018, 29, 40LT02.	1.3	10
15	Optical properties and oxidation of <i>α</i> -phase Ag–Al thin films. Nanotechnology, 2017, 28, 095202.	1.3	16
16	The sodium tungsten bronzes as plasmonic materials: fabrication, calculation and characterization. Materials Research Express, 2017, 4, 065703.	0.8	29
17	Corrosion processes of triangular silver nanoparticles compared to bulk silver. Journal of Nanoparticle Research, 2016, 18, 1.	0.8	26
18	Anomalously strong plasmon resonances in aluminium bronze by modification of the electronic density-of-states. Journal of Physics Condensed Matter, 2016, 28, 405501.	0.7	12

VICKI J KEAST

#	Article	IF	CITATIONS
19	Calculating EELS. , 2016, , 405-423.		1
20	Higher Order Plasmonic Modes Excited in Ag Triangular Nanoplates by an Electron Beam. Plasmonics, 2016, 11, 1081-1086.	1.8	23
21	The effect of vacancies on the optical properties of AuAl ₂ . Journal of Physics Condensed Matter, 2015, 27, 505501.	0.7	7
22	Ti3GaC2 and Ti3InC2: First bulk synthesis, DFT stability calculations and structural systematics. Journal of Solid State Chemistry, 2015, 230, 418-425.	1.4	34
23	Dielectric function and its predicted effect on localized plasmon resonances of equiatomic Au–Cu. Journal Physics D: Applied Physics, 2015, 48, 215304.	1.3	19
24	Multipolar and dark-mode plasmon resonances on drilled silver nano-triangles. Optics Express, 2015, 23, 18002.	1.7	26
25	Strategies to control the spectral properties of Au–Ni thin films. Thin Solid Films, 2014, 551, 200-204.	0.8	13
26	First principles calculations of the optical and plasmonic response of Au alloys and intermetallic compounds. Journal of Physics Condensed Matter, 2014, 26, 305501.	0.7	24
27	TDDFT Study of the Optical Absorption Spectra of Bare Gold Clusters. Journal of Physical Chemistry C, 2014, 118, 3194-3201.	1.5	40
28	AuAl2 and PtAl2 as potential plasmonic materials. Journal of Alloys and Compounds, 2013, 577, 581-586.	2.8	26
29	On the Coalescence of Nanoparticulate Gold Sinter Ink. Journal of Physical Chemistry C, 2013, 117, 11377-11384.	1.5	20
30	An introduction to the calculation of valence EELS: Quantum mechanical methods for bulk solids. Micron, 2013, 44, 93-100.	1.1	22
31	Application of EELS in Materials Science. Materials Characterization, 2012, 73, 1-7.	1.9	20
32	Light Splitting in Nanoporous Gold and Silver. ACS Nano, 2012, 6, 319-326.	7.3	44
33	TDDFT Study of the Optical Absorption Spectra of Bare and Coated Au ₅₅ and Au ₆₉ Clusters. Journal of Physical Chemistry C, 2011, 115, 21016-21021.	1.5	17
34	Energy-filtered phase retrieval using the transport of intensity equation. Applied Physics Letters, 2011, 99, 221905.	1.5	6
35	The role of plasmons and interband transitions in the color of AuAl2, AuIn2, and AuGa2. Applied Physics Letters, 2011, 99, 111908.	1.5	31

Prediction of the stability of the<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mrow><mml:msub><mml:mi>M</mml:mi><mml:mrow><mml:mi>n</mml:mi><mml:mo>+<1mml:mo> from first principles. Physical Review B, 2009, 80, .

VICKI J KEAST

#	Article	IF	CITATIONS
37	Nanoscale band gap spectroscopy on ZnO and GaN-based compounds with a monochromated electron microscope. Applied Physics Letters, 2009, 95, .	1.5	23
38	Quantitative TEM-based phase retrieval of MgO nano-cubes using the transport of intensity equation. Ultramicroscopy, 2008, 108, 805-815.	0.8	40
39	Optimizing EELS acquisition. Ultramicroscopy, 2008, 108, 837-846.	0.8	69
40	Correlation between film structures and potential limits for hydrogen and oxygen evolutions at a-C:N film electrochemical electrodes. Carbon, 2008, 46, 663-670.	5.4	20
41	The electronic structure of tungsten oxide thin films prepared by pulsed cathodic arc deposition and plasma-assisted pulsed magnetron sputtering. Journal of Physics Condensed Matter, 2008, 20, 175216.	0.7	5
42	Applications and theoretical simulation of low-loss electron energy-loss spectra. Materials Science and Technology, 2008, 24, 651-659.	0.8	12
43	Theoretical interpretation of electron energy-loss spectroscopic images. AIP Conference Proceedings, 2008, , .	0.3	3
44	Plasmon resonances and electron phase shifts near Au nanospheres. Applied Physics Letters, 2008, 93, .	1.5	8
45	TEM-based phase retrieval of p–n junction wafers using the transport of intensity equation. Philosophical Magazine, 2007, 87, 3565-3578.	0.7	19
46	Two-Dimensional Mapping of Chemical Information at Atomic Resolution. Physical Review Letters, 2007, 99, 086102.	2.9	239
47	Mapping surface plasmons at the nanometre scale with an electron beam. Nanotechnology, 2007, 18, 165505.	1.3	256
48	New developments in electron energy loss spectroscopy. Microscopy Research and Technique, 2007, 70, 211-219.	1.2	15
49	Plasma biasing to control the growth conditions of diamond-like carbon. Surface and Coatings Technology, 2007, 201, 4628-4632.	2.2	21
50	Astigmatic intensity equation for electron microscopy based phase retrieval. Ultramicroscopy, 2007, 107, 635-643.	0.8	12
51	Mapping chemical and bonding information using multivariate analysis of electron energy-loss spectrum images. Ultramicroscopy, 2006, 106, 1024-1032.	0.8	261
52	Measurements of composition and electronic structure in an operating light-emitting diode using analytical electron microscopy. Applied Physics Letters, 2004, 84, 1371-1373.	1.5	3
53	Bandstructure Calculations for the Simulation of Low-Loss EELS and Plasmon Energies. Microscopy and Microanalysis, 2004, 10, 854-855.	0.2	0
54	Electron energy-loss near edge structure (ELNES) of InGaN quantum wells. Journal of Microscopy, 2003, 210, 89-93.	0.8	19

VICKI J KEAST

#	Article	IF	CITATIONS
55	Electronic structure of GaN andInxGa1â^'xNmeasured with electron energy-loss spectroscopy. Physical Review B, 2002, 66, .	1.1	63
56	Electron energy-loss near-edge structure - a tool for the investigation of electronic structure on the nanometre scale. Journal of Microscopy, 2001, 203, 135-175.	0.8	175
57	Compositional distributions in nanoscale metallic multilayers studied using x-ray mapping. Journal of Materials Research, 2001, 16, 2032-2038.	1.2	5
58	Experimental verification of the electronic structure of MgB2 using electron energy-loss spectroscopy. Applied Physics Letters, 2001, 79, 3491-3493.	1.5	7
59	Electron Energy Loss Spectroscopy (EELS) of GaN Alloys and Quantum Wells. Microscopy and Microanalysis, 2001, 7, 1182-1183.	0.2	1
60	Quantification of boundary segregation in the analytical electron microscope. Journal of Microscopy, 2000, 199, 45-55.	0.8	55
61	Quantification Of Segregation Levels Using Xeds In The Stem. Microscopy and Microanalysis, 1999, 5, 146-147.	0.2	0
62	X-Ray Mapping of Bimetallic Catalysts in Mesoporous Silica. Microscopy and Microanalysis, 1999, 5, 622-623.	0.2	0
63	Highâ€resolution imaging of nanoparticle bimetallic catalysts supported on mesoporous silica. Catalysis Letters, 1999, 60, 113-120.	1.4	58
64	Tailoring Grain-Boundary Segregation to Control Mechanical Properties. Materials Research Society Symposia Proceedings, 1999, 586, 125.	0.1	0
65	The Effect of the Buffer Layer on the Structure, Mobility and Photoluminescence of MBE grown GaN. Materials Research Society Symposia Proceedings, 1999, 595, 1.	0.1	0
66	Electronic Structure, Charge Transfer and Bonding in Intermetallics Using EELS and Density Functional Theory. Materials Research Society Symposia Proceedings, 1998, 552, 1.	0.1	0
67	Measurement of the localized electronic structure associated with bismuth segregation to copper grain boundaries. Journal Physics D: Applied Physics, 1996, 29, 1730-1739.	1.3	18
68	STEM investigation of the chemistry and bonding changes associated with the grain boundary embrittlement of Cu by Bi. Proceedings Annual Meeting Electron Microscopy Society of America, 1996, 54, 526-527.	0.0	0