List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/953907/publications.pdf Version: 2024-02-01

DETE NOVAK

#	Article	IF	CITATIONS
1	Evidence for stepwise formation of solid electrolyte interphase in a Li-ion battery. Energy Storage Materials, 2022, 44, 156-167.	9.5	20
2	Elucidating the Humidity-Induced Degradation of Ni-Rich Layered Cathodes for Li-Ion Batteries. ACS Applied Materials & Interfaces, 2022, 14, 13240-13249.	4.0	9
3	Nonlinear Electrochemical Analysis: Worth the Effort to Reveal New Insights into Energy Materials. Advanced Energy Materials, 2022, 12, .	10.2	11
4	Rechargeable Batteries for Simultaneous Demand Peak Shaving and Price Arbitrage Business. IEEE Transactions on Sustainable Energy, 2021, 12, 148-157.	5.9	32
5	Instability of PVDF Binder in the LiFePO ₄ <i>versus</i> Li ₄ Ti ₅ O ₁₂ Liâ€Ion Battery Cell. Helvetica Chimica Acta, 2021, 104, .	1.0	13
6	Performance-limiting factors of graphite in sulfide-based all-solid-state lithium-ion batteries. Electrochimica Acta, 2021, 389, 138735.	2.6	14
7	Reactivity and Potential Profile across the Electrochemical LiCoO ₂ –Li ₃ PS ₄ Interface Probed by <i>Operando</i> X-ray Photoelectron Spectroscopy. ACS Applied Materials & Interfaces, 2021, 13, 42670-42681.	4.0	11
8	Unveiling the Complex Redox Reactions of SnO ₂ in Li-Ion Batteries Using <i>Operando</i> X-ray Photoelectron Spectroscopy and <i>In Situ</i> X-ray Absorption Spectroscopy. ACS Applied Materials & amp; Interfaces, 2021, 13, 2547-2557.	4.0	20
9	Cation Ordering and Redox Chemistry of Layered Ni-Rich Li <i>_x</i> Ni _{1–2<i>y</i>} Co <i>_y</i> Mn <i>_y</i> An Operando Raman Spectroscopy Study. Chemistry of Materials, 2020, 32, 186-194.	u b. 2	61
10	Operando investigation of the solid electrolyte interphase mechanical and transport properties formed from vinylene carbonate and fluoroethylene carbonate. Journal of Power Sources, 2020, 477, 228567.	4.0	61
11	Lithium-ion batteries – Current state of the art and anticipated developments. Journal of Power Sources, 2020, 479, 228708.	4.0	401
12	Cr-Doped Li-Rich Nickel Cobalt Manganese Oxide as a Positive Electrode Material in Li-Ion Batteries to Enhance Cycling Stability. ACS Applied Energy Materials, 2020, 3, 8646-8657.	2.5	23
13	Multi-length-scale x-ray spectroscopies for determination of surface reactivity at high voltages of LiNi0.8Co0.15Al0.05O2 vs Li4Ti5O12. Journal of Chemical Physics, 2020, 152, 184705.	1.2	9
14	Graphite Particle-Size Induced Morphological and Performance Changes of Graphite–Silicon Electrodes. Journal of the Electrochemical Society, 2020, 167, 100535.	1.3	24
15	Influence of Water Contamination on the SEI Formation in Li-Ion Cells: An Operando EQCM-D Study. ACS Applied Materials & Interfaces, 2020, 12, 15934-15942.	4.0	50
16	Influence of Na/Mn arrangements and P2/P′2 phase ratio on the electrochemical performance of Na _x MnO ₂ cathodes for sodium-ion batteries. Journal of Materials Chemistry A, 2020, 8, 6022-6033.	5.2	39
17	Effect of a Boron Based Anion Receptor on Graphite and LiFePO ₄ Electrodes. Journal of the Electrochemical Society, 2020, 167, 020525.	1.3	2
18	Insights into the chemical and electronic interface evolution of Li ₄ Ti ₅ O ₁₂ cycled in Li ₂ S–P ₂ S ₅ enabled by <i>operando</i> X-ray photoelectron spectroscopy. Journal of Materials Chemistry A, 2020, 8, 5138-5146.	5.2	23

#	Article	IF	CITATIONS
19	Engineering of Sn and Preâ€Lithiated Sn as Negative Electrode Materials Coupled to Garnet Taâ€LLZO Solid Electrolyte for Allâ€Solidâ€State Li Batteries. Batteries and Supercaps, 2020, 3, 557-565.	2.4	10
20	Coating of NCM 851005 Cathode Material with Al0@Al2O3 and Subsequent Treatment with Anhydrous HF. Journal of the Electrochemical Society, 2020, 167, 070510.	1.3	10
21	<i>Post Mortem</i> and <i>Operando</i> XPEEM: a Surface-Sensitive Tool for Studying Single Particles in Li-Ion Battery Composite Electrodes. Analytical Chemistry, 2020, 92, 3023-3031.	3.2	27
22	Insights into the Charge Storage Mechanism of Li ₃ VO ₄ Anode Materials for Liâ€ l on Batteries. ChemElectroChem, 2020, 7, 2033-2041.	1.7	12
23	Study of Graphite Cycling in Sulfide Solid Electrolytes. Journal of the Electrochemical Society, 2020, 167, 110558.	1.3	23
24	Coating of Li _{1+x} [Ni _{0.85} Co _{0.10} Mn _{0.05}] _{1â^'x} O _{2Cathode Active Material with Gaseous BF₃. Journal of the Electrochemical Society, 2020, 167–120505}	ub} 1.3	3
25	Solid Electrolyte Interphase (SEI) Formation on the Graphite Anode in Electrolytes Containing the Anion Receptor Tris(hexafluoroisopropyl)borate (THFIPB). Journal of the Electrochemical Society, 2020, 167, 130504.	1.3	3
26	Towards more Durable Electrochemical Capacitors by Elucidating the Ageing Mechanisms under Different Testing Procedures. ChemElectroChem, 2019, 6, 566-573.	1.7	21
27	Stable and Unstable Diglyme-Based Electrolytes for Batteries with Sodium or Graphite as Electrode. ACS Applied Materials & Interfaces, 2019, 11, 32844-32855.	4.0	77
28	A modeling framework to assess specific energy, costs and environmental impacts of Li-ion and Na-ion batteries. Sustainable Energy and Fuels, 2019, 3, 3061-3070.	2.5	36
29	Electrochemistry and morphology of graphite negative electrodes containing silicon as capacity-enhancing electrode additive. Electrochimica Acta, 2019, 320, 134602.	2.6	20
30	Revealing the Dual Surface Reactions on a HE-NCM Li-Ion Battery Cathode and Their Impact on the Surface Chemistry of the Counter Electrode. ACS Applied Materials & Interfaces, 2019, 11, 6054-6065.	4.0	23
31	Li/Fe substitution in Li-rich Ni, Co, Mn oxides for enhanced electrochemical performance as cathode materials. Journal of Materials Chemistry A, 2019, 7, 15215-15224.	5.2	34
32	Surface Degradation and Chemical Electrolyte Oxidation Induced by the Oxygen Released from Layered Oxide Cathodes in Liâ°lon Batteries. Batteries and Supercaps, 2019, 2, 482-492.	2.4	29
33	Operando EQCM-D with Simultaneous in Situ EIS: New Insights into Interphase Formation in Li Ion Batteries. Analytical Chemistry, 2019, 91, 2296-2303.	3.2	54
34	(Invited) Raman Microscopy: What Can the Technique Tell Us?. ECS Meeting Abstracts, 2019, , .	0.0	1
35	Online Electrochemical Mass Spectrometry for Rechargeable Batteries. ECS Meeting Abstracts, 2019, , .	0.0	0
36	Graphite as Cointercalation Electrode for Sodiumâ€lon Batteries: Electrode Dynamics and the Missing Solid Electrolyte Interphase (SEI). Advanced Energy Materials, 2018, 8, 1702724.	10.2	191

#	Article	IF	CITATIONS
37	Switch of the Charge Storage Mechanism of Li _{<i>x</i>} Ni _{0.80} Co _{0.15} Al _{0.05} O ₂ at Overdischarge Conditions. Chemistry of Materials, 2018, 30, 1907-1911.	3.2	32
38	Phosphorus anionic redox activity revealed by operando P K-edge X-ray absorption spectroscopy on diphosphonate-based conversion materials in Li-ion batteries. Chemical Communications, 2018, 54, 4939-4942.	2.2	7
39	SnO ₂ Model Electrode Cycled in Li-Ion Battery Reveals the Formation of Li ₂ SnO ₃ and Li ₈ SnO ₆ Phases through Conversion Reactions. ACS Applied Materials & Interfaces, 2018, 10, 8712-8720.	4.0	59
40	Solving the puzzle of Li ₄ Ti ₅ O ₁₂ surface reactivity in aprotic electrolytes in Li-ion batteries by nanoscale XPEEM spectromicroscopy. Journal of Materials Chemistry A, 2018, 6, 3534-3542.	5.2	17
41	Do imaging techniques add real value to the development of better post-Li-ion batteries?. Journal of Materials Chemistry A, 2018, 6, 3304-3327.	5.2	36
42	Monitoring the chemical and electronic properties of electrolyte–electrode interfaces in all-solid-state batteries using <i>operando</i> X-ray photoelectron spectroscopy. Physical Chemistry Chemical Physics, 2018, 20, 11123-11129.	1.3	48
43	Multiple redox couples cathode material for Li-ion battery: Lithium chromium phosphate. Journal of Energy Storage, 2018, 15, 266-273.	3.9	2
44	Lanthanum Manganite-based Air Electrode Catalysts and Their Application to Lithium-air Batteries: Effects of Carbon Support Oxidation. Electrochemistry, 2018, 86, 265-271.	0.6	5
45	Elucidation of Li _{<i>x</i>} Ni _{0.8} Co _{0.15} Al _{0.05} O ₂ Redox Chemistry by <i>Operando</i> Raman Spectroscopy. Chemistry of Materials, 2018, 30, 4694-4703.	3.2	76
46	In situ and Operando Raman Spectroscopy of Layered Transition Metal Oxides for Li-ion Battery Cathodes. Frontiers in Energy Research, 2018, 6, .	1.2	85
47	A Cylindrical Cell for Operando Neutron Diffraction of Li-Ion Battery Electrode Materials. Frontiers in Energy Research, 2018, 6, .	1.2	30
48	The counterintuitive impact of separator–electrolyte combinations on the cycle life of graphite–silicon composite electrodes. Journal of Power Sources, 2017, 343, 142-147.	4.0	7
49	Fe and Co methylene diphosphonates as conversion materials for Li-ion batteries. Journal of Power Sources, 2017, 342, 879-885.	4.0	5
50	Ligand influence in Li-ion battery hybrid active materials: Ni methylenediphosphonate vs. Ni dimethylamino methylenediphosphonate. Chemical Communications, 2017, 53, 5420-5423.	2.2	4
51	Electrochemical impedance spectroscopy of a Li–S battery: Part 1. Influence of the electrode and electrolyte compositions on the impedance of symmetric cells. Electrochimica Acta, 2017, 244, 61-68.	2.6	64
52	Comparative operando study of degradation mechanisms in carbon-based electrochemical capacitors with Li2SO4 and LiNO3 electrolytes. Carbon, 2017, 120, 281-293.	5.4	46
53	Publisher's Note: XPS Study of the Interface Evolution of Carbonaceous Electrodes for Li-O ₂ Batteries during the 1st Cycle [<i>J. Electrochem. Soc.,</i> 163, A2545 (2016)]. Journal of the Electrochemical Society, 2017, 164, X6-X6.	1.3	0
54	Relationship between the Properties and Cycle Life of Si/C Composites as Performance-Enhancing Additives to Graphite Electrodes for Li-Ion Batteries. Journal of the Electrochemical Society, 2017, 164, A190-A203.	1.3	12

#	Article	IF	CITATIONS
55	Cycling Behavior of Silicon-Containing Graphite Electrodes, Part B: Effect of the Silicon Source. Journal of Physical Chemistry C, 2017, 121, 25718-25728.	1.5	22
56	Electrochemical impedance spectroscopy of a Li–S battery: Part 2. Influence of separator chemistry on the lithium electrode/electrolyte interface. Electrochimica Acta, 2017, 255, 379-390.	2.6	23
57	Colloidal Synthesis and Electrochemistry of Surface Coated Nano-LiNi0.80Co0.15Al0.05O2. Journal of the Electrochemical Society, 2017, 164, A2617-A2624.	1.3	4
58	A New Concept of an Air-Electrode Catalyst for Li2O2 Decomposition Using MnO2 Nanosheets on Rechargeable Li-O2 Batteries. Electrochimica Acta, 2017, 252, 192-199.	2.6	9
59	Cycling Behavior of Silicon-Containing Graphite Electrodes, Part A: Effect of the Lithiation Protocol. Journal of Physical Chemistry C, 2017, 121, 18423-18429.	1.5	20
60	Crystal structure evolution <i>via</i> operando neutron diffraction during long-term cycling of a customized 5 V full Li-ion cylindrical cell LiNi _{0.5} Mn _{1.5} O ₄ <i>vs.</i> graphite. Journal of Materials Chemistry A, 2017, 5, 25574-25582.	5.2	31
61	Versatile Approach Combining Theoretical and Experimental Aspects of Raman Spectroscopy To Investigate Battery Materials: The Case of the LiNi _{0.5} Mn _{1.5} O ₄ Spinel. Journal of Physical Chemistry C, 2016, 120, 16377-16382.	1.5	23
62	Performance-Enhancing Asymmetric Separator for Lithium–Sulfur Batteries. ACS Applied Materials & Interfaces, 2016, 8, 18822-18831.	4.0	55
63	Decomposition of LiPF ₆ in High Energy Lithium-Ion Batteries Studied with Online Electrochemical Mass Spectrometry. Journal of the Electrochemical Society, 2016, 163, A1095-A1100.	1.3	185
64	On the correlation between electrode expansion and cycling stability of graphite/Si electrodes for Li-ion batteries. Carbon, 2016, 105, 42-51.	5.4	55
65	Pitfalls in Li–S Rate-Capability Evaluation. Journal of the Electrochemical Society, 2016, 163, A1139-A1145.	1.3	23
66	Operando Neutron Powder Diffraction Using Cylindrical Cell Design: The Case of LiNi0.5Mn1.5O4 vs Graphite. Journal of Physical Chemistry C, 2016, 120, 17268-17273.	1.5	30
67	Mechanism of the carbonate-based-electrolyte degradation and its effects on the electrochemical performance of Li 1+x (Ni a Co b Mn 1-a-b) 1-x O 2 cells. Journal of Power Sources, 2016, 335, 91-97.	4.0	7
68	Elucidating the Surface Reactions of an Amorphous Si Thin Film as a Model Electrode for Li-Ion Batteries. ACS Applied Materials & Interfaces, 2016, 8, 29791-29798.	4.0	41
69	XPS Study of the Interface Evolution of Carbonaceous Electrodes for Li-O ₂ Batteries during the 1st Cycle. Journal of the Electrochemical Society, 2016, 163, A2545-A2550.	1.3	26
70	Influence of aqueous electrolyte concentration on parasitic reactions in high-voltage electrochemical capacitors. Energy Storage Materials, 2016, 5, 111-115.	9.5	39
71	Electrode-electrolyte interface characterization of carbon electrodes in Li-O2 batteries: capabilities and limitations of infrared spectroscopy. Electrochimica Acta, 2016, 190, 753-757.	2.6	10
72	Ageing phenomena in high-voltage aqueous supercapacitors investigated by in situ gas analysis. Energy and Environmental Science, 2016, 9, 623-633.	15.6	204

#	Article	IF	CITATIONS
73	Effects of Solvent, Lithium Salt, and Temperature on Stability of Carbonate-Based Electrolytes for 5.0ÂV LiNi _{0.5} Mn _{1.5} O ₄ Electrode s . Journal of the Electrochemical Society, 2016, 163, A83-A89.	1.3	52
74	Online Electrochemical Mass Spectrometry of High Energy Lithium Nickel Cobalt Manganese Oxide/Graphite Half- and Full-Cells with Ethylene Carbonate and Fluoroethylene Carbonate Based Electrolytes. Journal of the Electrochemical Society, 2016, 163, A964-A970.	1.3	46
75	Investigation of Li-Ion Solvation in Carbonate Based Electrolytes Using Near Ambient Pressure Photoemission. Topics in Catalysis, 2016, 59, 628-634.	1.3	10
76	Understanding Inhomogeneous Reactions in Liâ€lon Batteries: Operando Synchrotron Xâ€Ray Diffraction on Two‣ayer Electrodes. Advanced Science, 2015, 2, 1500083.	5.6	35
77	Influence of graphite edge crystallographic orientation on the first lithium intercalation in Li-ion battery. Carbon, 2015, 91, 458-467.	5.4	10
78	Lithium chromium pyrophosphate as an insertion material for Li-ion batteries. Acta Crystallographica Section B: Structural Science, Crystal Engineering and Materials, 2015, 71, 661-667.	0.5	4
79	Visualization of O-O peroxo-like dimers in high-capacity layered oxides for Li-ion batteries. Science, 2015, 350, 1516-1521.	6.0	659
80	Activation Mechanism of LiNi _{0.80} Co _{0.15} Al _{0.05} O ₂ : Surface and Bulk Operando Electrochemical, Differential Electrochemical Mass Spectrometry, and X-ray Diffraction Analyses. Chemistry of Materials, 2015, 27, 526-536.	3.2	198
81	Simultaneous in Situ X-ray Absorption Spectroscopy and X-ray Diffraction Studies on Battery Materials: The Case of Fe _{0.5} TiOPO ₄ . Journal of Physical Chemistry C, 2015, 119, 3466-3471.	1.5	26
82	Influence of Conversion Material Morphology on Electrochemistry Studied with Operando Xâ€Ray Tomography and Diffraction. Advanced Materials, 2015, 27, 1676-1681.	11.1	48
83	Understanding the Interaction of the Carbonates and Binder in Na-Ion Batteries: A Combined Bulk and Surface Study. Chemistry of Materials, 2015, 27, 1210-1216.	3.2	88
84	MoS2 coating on MoO3 nanobelts: A novel approach for a high specific charge electrode for rechargeable Li-ion batteries. Journal of Power Sources, 2015, 279, 636-644.	4.0	29
85	In situ X-ray diffraction characterisation of Fe0.5TiOPO4 and Cu0.5TiOPO4 as electrode material for sodium-ion batteries. Electrochimica Acta, 2015, 176, 18-21.	2.6	44
86	Structural Changes and Microstrain Generated on LiNi _{0.80} Co _{0.15} Al _{0.05} O ₂ during Cycling: Effects on the Electrochemical Performance. Journal of the Electrochemical Society, 2015, 162, A1823-A1828.	1.3	59
87	A low-temperature benzyl alcohol/benzyl mercaptan synthesis of iron oxysulfide/iron oxide composite materials for electrodes in Li-ion batteries. Journal of Materials Chemistry A, 2015, 3, 16112-16119.	5.2	6
88	Electrochemical study of Si/C composites with particulate and fibrous morphology as negative electrodes for lithium-ion batteries. Journal of Power Sources, 2015, 294, 128-135.	4.0	18
89	Reversible Li-Intercalation through Oxygen Reactivity in Li-Rich Li-Fe-Te Oxide Materials. Journal of the Electrochemical Society, 2015, 162, A1341-A1351.	1.3	47
90	Progress Towards Commercially Viable Li–S Battery Cells. Advanced Energy Materials, 2015, 5, 1500118.	10.2	355

#	Article	IF	CITATIONS
91	Surface/Interface Study on Full xLi ₂ MnO ₃ ·(1 â^' x)LiMO ₂ (M = Ni,) Tj ETQ	2q1.1 0.78	34314 rgBT
92	Understanding the Roles of Anionic Redox and Oxygen Release during Electrochemical Cycling of Lithium-Rich Layered Li ₄ FeSbO ₆ . Journal of the American Chemical Society, 2015, 137, 4804-4814.	6.6	155
93	In Situ Gas Analysis of Li ₄ Ti ₅ O ₁₂ Based Electrodes at Elevated Temperatures. Journal of the Electrochemical Society, 2015, 162, A870-A876.	1.3	89
94	Consequences of Electrolyte Degradation for the Electrochemical Performance of Li _{1+x} (Ni _a Co _b Mn _{1-a-b}) _{1-x} O ₂ . Journal of the Electrochemical Society, 2015, 162, A7072-A7077.	1.3	14
95	Concentration Effects on the Entropy of Electrochemical Lithium Deposition: Implications for Li ⁺ Solvation. Journal of Physical Chemistry B, 2015, 119, 13385-13390.	1.2	11
96	Rechargeable Batteries: Grasping for the Limits of Chemistry. Journal of the Electrochemical Society, 2015, 162, A2468-A2475.	1.3	211
97	Freeze-dryed LixMoO3 nanobelts used as cathode materials for lithium-ion batteries: A bulk and interface study. Journal of Power Sources, 2015, 297, 276-282.	4.0	8
98	Combined operando X-ray diffraction–electrochemical impedance spectroscopy detecting solid solution reactions of LiFePO4 in batteries. Nature Communications, 2015, 6, 8169.	5.8	60
99	Taming the polysulphide shuttle in Li–S batteries by plasma-induced asymmetric functionalisation of the separator. RSC Advances, 2015, 5, 79654-79660.	1.7	33
100	Lithium Iron Methylenediphosphonate: A Model Material for New Organic–Inorganic Hybrid Positive Electrode Materials for Li Ion Batteries. Chemistry of Materials, 2015, 27, 7889-7895.	3.2	16
101	MSnS ₂ (M = Cu, Fe) Electrode Family as Dual-Performance Electrodes for Li–S and Li–Ion Batteries. Journal of the Electrochemical Society, 2015, 162, A284-A287.	1.3	7
102	Important Aspects for Reliable Electrochemical Impedance Spectroscopy Measurements of Li-Ion Battery Electrodes. Journal of the Electrochemical Society, 2015, 162, A218-A222.	1.3	38
103	Towards a Stable Organic Electrolyte for the Lithium Oxygen Battery. Advanced Energy Materials, 2015, 5, 1400867.	10.2	192
104	Polyacrylate bound TiSb2 electrodes for Li-ion batteries. Journal of Power Sources, 2015, 273, 174-179.	4.0	11
105	Combined In Situ Raman and IR Microscopy at the Interface of a Single Graphite Particle with Ethylene Carbonate/Dimethyl Carbonate. Journal of the Electrochemical Society, 2014, 161, A1555-A1563.	1.3	49
106	Reducing Mass Transfer Effects on the Kinetics of 5V HE-NCM Electrode Materials for Li-Ion Batteries. Journal of the Electrochemical Society, 2014, 161, A871-A874.	1.3	5
107	Importance of â€~unimportant' experimental parameters in Li–S battery development. Journal of Power Sources, 2014, 249, 497-502.	4.0	79
108	Ex situ and in situ Raman microscopic investigation of the differences between stoichiometric LiMO2 and high-energy xLi2MnO3·(1–x)LiMO2 (M = Ni, Co, Mn). Electrochimica Acta, 2014, 130, 206-212.	2.6	93

#	Article	IF	CITATIONS
109	Enhancement of the high potential specific charge in layered electrode materials for lithium-ion batteries. Journal of Materials Chemistry A, 2014, 2, 8589.	5.2	92
110	Bulk and surface analyses of ageing of a 5V-NCM positive electrode material for lithium-ion batteries. Journal of Materials Chemistry A, 2014, 2, 6488.	5.2	23
111	Elucidation of the reaction mechanism upon lithiation and delithiation of Cu _{0.5} TiOPO ₄ . Journal of Materials Chemistry A, 2014, 2, 12513-12518.	5.2	20
112	Differential Electrochemical Mass Spectrometry Study of the Interface of <i>x</i> Li ₂ MnO ₃ ·(1– <i>x</i>)LiMO ₂ (M = Ni, Co, and Mn) Material as a Positive Electrode in Li-Ion Batteries. Chemistry of Materials, 2014, 26, 5051-5057.	3.2	146
113	Electrochemical impedance spectroscopy: Understanding the role of the reference electrode. Electrochemistry Communications, 2013, 34, 208-210.	2.3	35
114	A metastable β-sulfur phase stabilized at room temperature during cycling of high efficiency carbon fibre–sulfur composites for Li–S batteries. Journal of Materials Chemistry A, 2013, 1, 13089.	5.2	36
115	Effect of metal ion and ball milling on the electrochemical properties of M0.5TiOPO4 (M=Ni, Cu, Mg). Electrochimica Acta, 2013, 93, 179-188.	2.6	11
116	Antimony based negative electrodes for next generation Li-ion batteries. Journal of Materials Chemistry A, 2013, 1, 13011.	5.2	28
117	Circular in situneutron powder diffraction cell for study of reaction mechanism in electrode materials for Li-ion batteries. RSC Advances, 2013, 3, 757-763.	1.7	35
118	Electrochemical activation of Li2MnO3 at elevated temperature investigated by in situ Raman microscopy. Electrochimica Acta, 2013, 109, 426-432.	2.6	33
119	Shrinking annuli mechanism and stage-dependent rate capability of thin-layer graphite electrodes for lithium-ion batteries. Electrochimica Acta, 2013, 106, 149-158.	2.6	109
120	Oxygen release from high-energy xLi2MnO3·(1â^'x)LiMO2 (M=Mn, Ni, Co): Electrochemical, differential electrochemical mass spectrometric, in situ pressure, and in situ temperature characterization. Electrochimica Acta, 2013, 93, 114-119.	2.6	64
121	Critical aspects in the development of lithium–air batteries. Journal of Solid State Electrochemistry, 2013, 17, 1793-1807.	1.2	71
122	Memory effect in a lithium-ion battery. Nature Materials, 2013, 12, 569-575.	13.3	287
123	Size controlled CuO nanoparticles for Li-ion batteries. Journal of Power Sources, 2013, 241, 415-422.	4.0	79
124	Ammonolyzed MoO ₃ Nanobelts as Novel Cathode Material of Rechargeable Liâ€lon Batteries. Advanced Energy Materials, 2013, 3, 606-614.	10.2	102
125	Influence of Cut-Off Potential on the Electrochemistry of M _{0.5} TiOPO ₄ (M =) Tj ETQq1	1 0.78431 1.3	.4 rgBT /Ove
126	Microcalorimetric Measurements of the Solvent Contribution to the Entropy Changes upon Electrochemical Lithium Bulk Deposition. Angewandte Chemie - International Edition, 2013, 52, 13233-13237.	7.2	26

#	Article	IF	CITATIONS
127	Chemical surface treatments for decreasing irreversible charge loss and preventing exfoliation of graphite in Li-ion batteries. Electrochimica Acta, 2012, 82, 233-242.	2.6	22
128	Lithium-Sulfur Battery Development. ECS Meeting Abstracts, 2012, , .	0.0	0
129	Formation of artificial solid electrolyte interphase by grafting for improving Li-ion intercalation and preventing exfoliation of graphite. Carbon, 2012, 50, 2599-2614.	5.4	46
130	A structural and electrochemical study of Ni0.5TiOPO4 synthesized via modified solution route. Electrochimica Acta, 2012, 77, 244-249.	2.6	12
131	Influence of different electrode compositions and binder materials on the performance of lithium–sulfur batteries. Journal of Power Sources, 2012, 205, 420-425.	4.0	109
132	Reactions in the Rechargeable Lithium–O ₂ Battery with Alkyl Carbonate Electrolytes. Journal of the American Chemical Society, 2011, 133, 8040-8047.	6.6	1,157
133	Microwave-assisted solution synthesis of doped LiFePO4 with high specific charge and outstanding cycling performance. Journal of Materials Chemistry, 2011, 21, 5881.	6.7	76
134	Continuous flame aerosol synthesis of carbon-coated nano-LiFePO4 for Li-ion batteries. Journal of Aerosol Science, 2011, 42, 657-667.	1.8	48
135	Synthesis of a polymeric 2,5-di-t-butyl-1,4-dialkoxybenzene and its evaluation as a novel cathode material. Synthetic Metals, 2011, 161, 259-262.	2.1	21
136	Hybridization of electrochemical capacitors and rechargeable batteries: An experimental analysis of the different possible approaches utilizing activated carbon, Li4Ti5O12 and LiMn2O4. Journal of Power Sources, 2011, 196, 10305-10313.	4.0	150
137	Mixed bi-material electrodes based on LiMn2O4 and activated carbon for hybrid electrochemical energy storage devices. Electrochimica Acta, 2011, 56, 8403-8411.	2.6	44
138	Electrochemical and spectroscopic characterization of lithium titanate spinel Li4Ti5O12. Electrochimica Acta, 2011, 56, 9324-9328.	2.6	7
139	Interplay Between Size and Crystal Structure of Molybdenum Dioxide Nanoparticles—Synthesis, Growth Mechanism, and Electrochemical Performance. Small, 2011, 7, 377-387.	5.2	85
140	A novel combinative Raman and SEM mapping method for the detection of exfoliation of graphite in electrodes at very positive potentials. Journal of Raman Spectroscopy, 2011, 42, 1754-1760.	1.2	6
141	Oxygen Reactions in a Nonâ€Aqueous Li ⁺ Electrolyte. Angewandte Chemie - International Edition, 2011, 50, 6351-6355.	7.2	518
142	Concatenation of electrochemical grafting with chemical or electrochemical modification for preparing electrodes with specific surface functionality. Electrochimica Acta, 2011, 56, 3555-3561.	2.6	17
143	The influence of the local current density on the electrochemical exfoliation of graphite in lithium-ion battery negative electrodes. Electrochimica Acta, 2011, 56, 3799-3808.	2.6	38
144	Colorimetric determination of lithium-ion mobility in graphite composite electrodes. Journal of Electroanalytical Chemistry, 2010, 644, 127-131.	1.9	50

#	Article	IF	CITATIONS
145	Simulation of a supercapacitor/Li-ion battery hybrid for pulsed applications. Journal of Power Sources, 2010, 195, 2731-2736.	4.0	72
146	In situ neutron diffraction study of Li insertion in Li4Ti5O12. Electrochemistry Communications, 2010, 12, 804-807.	2.3	65
147	Overpotentials and solid electrolyte interphase formation at porous graphite electrodes in mixed ethylene carbonate–propylene carbonate electrolyte systems. Electrochimica Acta, 2010, 55, 8928-8937.	2.6	16
148	In situ X-ray diffraction study of different graphites in a propylene carbonate based electrolyte at very positive potentials. Electrochimica Acta, 2010, 55, 4964-4969.	2.6	36
149	A review of the features and analyses of the solid electrolyte interphase in Li-ion batteries. Electrochimica Acta, 2010, 55, 6332-6341.	2.6	2,367
150	Synthesis of A Novel Spirobisnitroxide Polymer and its Evaluation in an Organic Radical Battery. Chemistry of Materials, 2010, 22, 783-788.	3.2	80
151	A Multiple Working Electrode for Electrochemical Cells: A Tool for Current Density Distribution Studies. Angewandte Chemie - International Edition, 2009, 48, 528-532.	7.2	42
152	Correlations between surface properties of graphite and the first cycle specific charge loss in lithium-ion batteries. Carbon, 2009, 47, 705-712.	5.4	94
153	The influence of electrolyte and graphite type on the <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si1.gif" display="inline" overflow="scroll"><mml:mrow><mml:msubsup><mml:mrow><mml:mtext>PF</mml:mtext></mml:mrow><mml: intercalation behaviour at high potentials. Carbon. 2009. 47. 2727-2732.</mml: </mml:msubsup></mml:mrow></mml:math 	mröw> <n< td=""><td>10189 1018:0000000000000000000000000000000000</td></n<>	10189 1018:0000000000000000000000000000000000
154	Flexible free-standing carbon nanotube films for model lithium-ion batteries. Carbon, 2009, 47, 2976-2983.	5.4	306
155	Flame spray-pyrolyzed vanadium oxide nanoparticles for lithium battery cathodes. Physical Chemistry Chemical Physics, 2009, 11, 3748.	1.3	112
156	Efficient microwave-assisted synthesis of LiFePO4 mesocrystals with high cycling stability. Journal of Materials Chemistry, 2009, 19, 5125.	6.7	80
157	Carbon Materials in Lithium-Ion Batteries. Advanced Materials and Technologies, 2009, , 263-328.	0.4	10
158	Direct evidence of oxygen evolution from Li1+x (Ni1/3Mn1/3Co1/3)1â^'x O2 at high potentials. Journal of Applied Electrochemistry, 2008, 38, 893-896.	1.5	73
159	A novel electrochemical cell for <i>in situ</i> neutron diffraction studies of electrode materials for lithium-ion batteries. Journal of Applied Crystallography, 2008, 41, 690-694.	1.9	48
160	A Feasibility Study on the Use of Li ₄ V ₃ O ₈ as a High Capacity Cathode Material for Lithiumâ€Ion Batteries. Chemistry - A European Journal, 2008, 14, 11141-11148.	1.7	9
161	In situ Raman spectroscopy of insertion electrodes for lithium-ion batteries and supercapacitors: First cycle effects. Journal of Physics and Chemistry of Solids, 2008, 69, 1232-1237.	1.9	103
162	Impedance spectroscopy on porous materials: A general model and application to graphite electrodes of lithium-ion batteries. Electrochimica Acta, 2008, 53, 4109-4121.	2.6	67

#	Article	IF	CITATIONS
163	Synthesis of Tetrahedral LiFeO ₂ and Its Behavior as a Cathode in Rechargeable Lithium Batteries. Journal of the American Chemical Society, 2008, 130, 3554-3559.	6.6	74
164	Colorimetric Determination of Lithium Content in Electrodes of Lithium-Ion Batteries. Journal of the Electrochemical Society, 2008, 155, A862.	1.3	91
165	A Dilatometric Study of Lithium Intercalation into Powder-Type Graphite Electrodes. Electrochemical and Solid-State Letters, 2008, 11, A151.	2.2	92
166	Application of In Situ Techniques for Investigations in Lithium-Ion Battery Materials. ECS Transactions, 2007, 3, 29-43.	0.3	7
167	CO[sub 2] Gas Evolution on Cathode Materials for Lithium-Ion Batteries. Journal of the Electrochemical Society, 2007, 154, A449.	1.3	65
168	Synthesis of Poly(4-methacryloyloxy-TEMPO) via Group-Transfer Polymerization and Its Evaluation in Organic Radical Battery. Chemistry of Materials, 2007, 19, 2910-2914.	3.2	151
169	Raman study of lithium coordination in EMI-TFSI additive systems as lithium-ion battery ionic liquid electrolytes. Journal of Raman Spectroscopy, 2007, 38, 110-112.	1.2	121
170	Behaviour of highly crystalline graphitic materials in lithium-ion cells with propylene carbonate containing electrolytes: An in situ Raman and SEM study. Electrochimica Acta, 2007, 52, 4884-4891.	2.6	56
171	In situ X-ray diffraction of the intercalation of (C2H5)4N+ and BF4â^² into graphite from acetonitrile and propylene carbonate based supercapacitor electrolytes. Electrochimica Acta, 2007, 53, 1074-1082.	2.6	97
172	Oxygen, hydrogen, ethylene and CO2 development in lithium-ion batteries. Journal of Power Sources, 2007, 174, 1156-1160.	4.0	87
173	Synthesis and characterization of doped Li[Mn0.5â^'x/2Ni0.5â^'x/2Cox]O2 positive electrode materials. Journal of Power Sources, 2007, 174, 584-587.	4.0	5
174	A multi-sample automatic system for <i>in situ</i> electrochemical X-ray diffraction synchrotron measurements. Journal of Synchrotron Radiation, 2007, 14, 487-491.	1.0	29
175	Electrochemically active flame-made nanosized spinels: LiMn2O4, Li4Ti5O12 and LiFe5O8. Materials Chemistry and Physics, 2007, 101, 372-378.	2.0	74
176	Electrochemical lithium insertion into anatase-type TiO2: An in situ Raman microscopy investigation. Electrochimica Acta, 2007, 52, 5357-5367.	2.6	124
177	Demonstrating Oxygen Loss and Associated Structural Reorganization in the Lithium Battery Cathode Li[Ni0.2Li0.2Mn0.6]O2. Journal of the American Chemical Society, 2006, 128, 8694-8698.	6.6	1,406
178	Nano silicon for lithium-ion batteries. Electrochimica Acta, 2006, 52, 973-978.	2.6	191
179	An in situ Raman study of the intercalation of supercapacitor-type electrolyte into microcrystalline graphite. Electrochimica Acta, 2006, 52, 675-680.	2.6	128
180	Surface reactivity of graphite materials and their surface passivation during the first electrochemical lithium insertion. Journal of Power Sources, 2006, 153, 300-311.	4.0	79

#	Article	IF	CITATIONS
181	SEI film formation on highly crystalline graphitic materials in lithium-ion batteries. Journal of Power Sources, 2006, 153, 385-390.	4.0	178
182	Study of styrene butadiene rubber and sodium methyl cellulose as binder for negative electrodes in lithium-ion batteries. Journal of Power Sources, 2006, 161, 617-622.	4.0	434
183	Graphite surface disorder detection using in situ Raman microscopy. Solid State Ionics, 2006, 177, 2801-2806.	1.3	71
184	Rechargeable Li2O2Electrode for Lithium Batteries. Journal of the American Chemical Society, 2006, 128, 1390-1393.	6.6	1,073
185	Ageing mechanisms in lithium-ion batteries. Journal of Power Sources, 2005, 147, 269-281.	4.0	3,023
186	Impact of co-solvent chain branching on lithium-ion battery performance. Journal of Power Sources, 2005, 146, 355-359.	4.0	7
187	Behaviour of highly crystalline graphites in lithium-ion cells with propylene carbonate containing electrolytes. Journal of Power Sources, 2005, 146, 134-141.	4.0	57
188	Advanced in situ characterization methods applied to carbonaceous materials. Journal of Power Sources, 2005, 146, 15-20.	4.0	80
189	Gas evolution in activated carbon/propylene carbonate based double-layer capacitors. Electrochemistry Communications, 2005, 7, 925-930.	2.3	126
190	Acetone as oxidative decomposition product in propylene carbonate containing battery electrolyte. Electrochemistry Communications, 2005, 7, 1380-1384.	2.3	44
191	Maleic anhydride as an additive to Î ³ -butyrolactone solutions for Li-ion batteries. Electrochimica Acta, 2005, 50, 1733-1738.	2.6	51
192	Stabilisation of lithiated graphite in an electrolyte based on ionic liquids: an electrochemical and scanning electron microscopy study. Carbon, 2005, 43, 1488-1498.	5.4	159
193	High Rate Capability of Graphite Negative Electrodes for Lithium-Ion Batteries. Journal of the Electrochemical Society, 2005, 152, A474.	1.3	295
194	A new type of nano-sized silicon/carbon composite electrode for reversible lithium insertion. Chemical Communications, 2005, , 1566-1568.	2.2	203
195	Chemical Vapor Deposited Siliconâ^•Graphite Compound Material as Negative Electrode for Lithium-Ion Batteries. Electrochemical and Solid-State Letters, 2005, 8, A516.	2.2	115
196	Stable cycling of graphite in an ionic liquid based electrolyte. Chemical Communications, 2004, , 2098-2099.	2.2	131
197	In situ neutron radiography of lithium-ion batteries: the gas evolution on graphite electrodes during the charging. Journal of Power Sources, 2004, 130, 221-226.	4.0	79
198	Exfoliation of Graphite during Electrochemical Lithium Insertion in Ethylene Carbonate-Containing Electrolytes. Journal of the Electrochemical Society, 2004, 151, A1383.	1.3	91

#	Article	IF	CITATIONS
199	The role of graphite surface group chemistry on graphite exfoliation during electrochemical lithium insertion. Journal of Power Sources, 2003, 119-121, 543-549.	4.0	39
200	Safety Aspects of Graphite Negative Electrode Materials for Lithium-Ion Batteries. Journal of the Electrochemical Society, 2002, 149, A1020.	1.3	60
201	Raman Microscopy Applied to Rechargeable Lithium-Ion Cells-Steps towards in situ Raman Imaging with Increased Optical Efficiency. Applied Spectroscopy, 2001, 55, 1131-1137.	1.2	35
202	The complex electrochemistry of graphite electrodes in lithium-ion batteries. Journal of Power Sources, 2001, 97-98, 39-46.	4.0	124
203	Relation between surface properties, pore structure and first-cycle charge loss of graphite as negative electrode in lithium-ion batteries. Journal of Power Sources, 2001, 97-98, 78-82.	4.0	105
204	Raman microscopy as a quality control tool for electrodes of lithium-ion batteries. Journal of Power Sources, 2001, 97-98, 174-180.	4.0	35
205	In situ neutron radiography of lithium-ion batteries during charge/discharge cycling. Journal of Power Sources, 2001, 101, 177-181.	4.0	69
206	DEMS study of gas evolution at thick graphite electrodes for lithium-ion batteries: the effect of Î ³ -butyrolactone. Journal of Power Sources, 2001, 102, 277-282.	4.0	67
207	SNIFTIRS investigation of the oxidative decomposition of organic-carbonate-based electrolytes for lithium-ion cells. Electrochimica Acta, 2000, 45, 3589-3599.	2.6	85
208	Electrochemical SPM investigation of the solid electrolyte interphase film formed on HOPG electrodes. Electrochemistry Communications, 2000, 2, 436-440.	2.3	85
209	Advanced in situ methods for the characterization of practical electrodes in lithium-ion batteries. Journal of Power Sources, 2000, 90, 52-58.	4.0	124
210	Dilatometric Investigations of Graphite Electrodes in Nonaqueous Lithium Battery Electrolytes. Journal of the Electrochemical Society, 2000, 147, 2427.	1.3	165
211	Oxidative Electrolyte Solvent Degradation in Lithiumâ€lon Batteries: An In Situ Differential Electrochemical Mass Spectrometry Investigation. Journal of the Electrochemical Society, 1999, 146, 1702-1706.	1.3	148
212	Vanadium Oxide Nanotubes. A New Nanostructured Redoxâ€Active Material for the Electrochemical Insertion of Lithium. Journal of the Electrochemical Society, 1999, 146, 2780-2783.	1.3	185
213	In situ investigation of the interaction between graphite and electrolyte solutions. Journal of Power Sources, 1999, 81-82, 212-216.	4.0	93
214	Key factors for the cycling stability of graphite intercalation electrodes for lithium-ion batteries. Journal of Power Sources, 1999, 81-82, 243-247.	4.0	56
215	Multiple internal reflection FTIR spectroscopic (MIRFTIRS) study of the redox process of poly(5-amino-1,4-naphthoquinone) film in aqueous and organic media. Electrochimica Acta, 1999, 44, 1953-1964.	2.6	32
216	Magnesium insertion electrodes for rechargeable nonaqueous batteries — a competitive alternative to lithium?. Electrochimica Acta, 1999, 45, 351-367.	2.6	353

#	Article	IF	CITATIONS
217	Poly(5â€aminoâ€1,4â€naphthoquinone), a Novel Lithiumâ€Inserting Electroactive Polymer with High Specific Charge. Journal of the Electrochemical Society, 1999, 146, 2393-2396.	1.3	75
218	Insertion Electrode Materials for Rechargeable Lithium Batteries. Advanced Materials, 1998, 10, 725-763.	11.1	2,676
219	Anodic oxidation of 5-amino-1,4-naphthoquinone (ANQ) and synthesis of a conducting polymer (PANQ). Synthetic Metals, 1998, 92, 197-205.	2.1	80
220	In Situ Investigation of the Electrochemical Reduction of Carbonate Electrolyte Solutions at Graphite Electrodes. Journal of the Electrochemical Society, 1998, 145, 1081-1087.	1.3	216
221	Characterization of Layered Lithium Nickel Manganese Oxides Synthesized by a Novel Oxidative Coprecipitation Method and Their Electrochemical Performance as Lithium Insertion Electrode Materials. Journal of the Electrochemical Society, 1998, 145, 1113-1121.	1.3	205
222	Graphites for Lithiumâ€lon Cells: The Correlation of the First ycle Charge Loss with the Brunauerâ€Emmettâ€Teller Surface Area. Journal of the Electrochemical Society, 1998, 145, 428-436.	1.3	309
223	Electrochemistry of Chemically Lithiated NaV3 O 8: A Positive Electrode Material for Use in Rechargeable Lithiumâ€lon Batteries. Journal of the Electrochemical Society, 1998, 145, 421-427.	1.3	54
224	Chloroethylene Carbonate, a Solvent for Lithiumâ€ion Cells, Evolving  CO 2 during Reduction. Journal of the Electrochemical Society, 1998, 145, L27-L30.	1.3	43
225	Insertion Electrode Materials for Rechargeable Lithium Batteries. , 1998, 10, 725.		17
226	Electrochemically Active Polymers for Rechargeable Batteries. Chemical Reviews, 1997, 97, 207-282.	23.0	1,525
227	Graphite electrodes with tailored porosity for rechargeable ion-transfer batteries. Journal of Power Sources, 1997, 68, 267-270.	4.0	53
228	Cycling performance of novel lithium insertion electrode materials based on the Li-Ni-Mn-O system. Journal of Power Sources, 1997, 68, 629-633.	4.0	45
229	Crystal Structure of the Product of Mg2+Insertion into V2O5Single Crystals. Journal of Solid State Chemistry, 1996, 123, 317-323.	1.4	86
230	Electrochemical insertion of lithium, sodium, and magnesium in molybdenum(VI) oxide. Journal of Power Sources, 1995, 54, 346-351.	4.0	175
231	Magnesium insertion batteries — an alternative to lithium?. Journal of Power Sources, 1995, 54, 479-482.	4.0	95
232	Electrochemical Insertion of Magnesium into Hydrated Vanadium Bronzes. Journal of the Electrochemical Society, 1995, 142, 2544-2550.	1.3	153
233	Magnesium Insertion in Vanadium Oxides: A Structural Study. Zeitschrift Fur Physikalische Chemie, 1994, 185, 51-68.	1.4	27
234	Electrochemical Insertion of Magnesium in Metal Oxides and Sulfides from Aprotic Electrolytes. Journal of the Electrochemical Society, 1993, 140, 140-144.	1.3	221

#	Article	IF	CITATIONS
235	Oxidation of Acetonitrileâ€Based Electrolyte Solutions at High Potentials: An In Situ Fourier Transform Infrared Spectroscopy Study. Journal of the Electrochemical Society, 1993, 140, 3390-3395.	1.3	50
236	The Ion Exchange Mechanism of Polypyrrole in Propylene Carbonate and Dimethylsulfite Based Electrolytes: An In Situ Probe Beam Deflection Study. Journal of the Electrochemical Society, 1993, 140, 37-40.	1.3	20
237	A Comparative Study on Thin Poly-N-methylpyrrole and Polypyrrole Films. Collection of Czechoslovak Chemical Communications, 1992, 57, 339-348.	1.0	8
238	Limitations of polypyrrole synthesis in water and their causes. Electrochimica Acta, 1992, 37, 1227-1230.	2.6	37
239	The influence of H+ ions liberated by electropolymerization on the decomposition of propylene carbonate. Electrochimica Acta, 1992, 37, 2595-2597.	2.6	7
240	Overoxidation of Polypyrrole in Propylene Carbonate: An In Situ FTIR Study. Journal of the Electrochemical Society, 1991, 138, 3300-3304.	1.3	114
241	A high-temperature lithiumî—,copper oxide cell with a solid polymer electrolyte. Journal of Power Sources, 1991, 35, 235-247.	4.0	18
242	An electrochemical study of pyrrole/N-methylpyrrole copolymer. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 1991, 300, 99-110.	0.3	24
243	The Influence of Water on the Cycling Behavior of the Polypyrrole Electrode in Lithium Cells. Journal of the Electrochemical Society, 1990, 137, 1036-1042.	1.3	34
244	Performance of the Lowâ€Currentâ€Densityâ€Synthesized Polypyrrole in Lithium Cells Containing Propylene Carbonate. Journal of the Electrochemical Society, 1990, 137, 1681-1689.	1.3	66
245	The lithiumî—sodium thiochromite all-solid-state high temperature secondary cell. Journal of Power Sources, 1989, 28, 279-294.	4.0	3
246	Electrical and electrochemical chracteristics of a new type of polyacetylene films. Collection of Czechoslovak Chemical Communications, 1989, 54, 1482-1495.	1.0	4
247	Selfâ€Discharge Rate of the Polypyrroleâ€Polyethylene Oxide Composite Electrode. Journal of the Electrochemical Society, 1988, 135, 2485-2490.	1.3	41
248	Preparation and Electrochemical Behaviour of Poly(N-vinylcarbazole). Zeitschrift Fur Physikalische Chemie, 1988, 160, 99-118.	1.4	9
249	Composite Polymer Positive Electrodes in Solidâ€5tate Lithium Secondary Batteries. Journal of the Electrochemical Society, 1987, 134, 1341-1345.	1.3	46
250	Cycling behaviour of the polypyrrole—polyethylene oxide composite electrode. Journal of Power Sources, 1987, 21, 17-24.	4.0	27
251	CuO cathode in lithium cells—III. Its discharge kinetics. Electrochimica Acta, 1986, 31, 1167-1173.	2.6	13
252	CuO cathode in lithium cells—II. Reduction mechanism of CuO. Electrochimica Acta, 1985, 30, 1687-1692.	2.6	63