Joshua D Mcgraw

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9539059/publications.pdf

Version: 2024-02-01

566801 433756 34 952 15 31 citations h-index g-index papers 35 35 35 1271 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Near-surface rheology and hydrodynamic boundary condition of semi-dilute polymer solutions. Soft Matter, 2021, 17, 3765-3774.	1.2	4
2	Time dependence of advection-diffusion coupling for nanoparticle ensembles. Physical Review Fluids, 2021, 6, .	1.0	9
3	Interface-Sensitive Raman Microspectroscopy of Water via Confinement with a Multimodal Miniature Surface Forces Apparatus. Langmuir, 2019, 35, 15543-15551.	1.6	8
4	Self-Similar Relaxation of Confined Microfluidic Droplets. Physical Review Letters, 2019, 123, 024501.	2.9	8
5	Multimodal Miniature Surface Forces Apparatus ($\hat{l}^1/4$ SFA) for Interfacial Science Measurements. Langmuir, 2019, 35, 15500-15514.	1.6	12
6	Adsorption-induced slip inhibition for polymer melts on ideal substrates. Nature Communications, 2018, 9, 1172.	5.8	11
7	Influence of outer-layer finite-size effects on the dewetting dynamics of a thin polymer film embedded in an immiscible matrix. Soft Matter, 2018, 14, 6256-6263.	1.2	7
8	Glass transition at interfaces. Europhysics News, 2017, 48, 24-28.	0.1	6
9	Influence of bidisperse self-assembled monolayer structure on the slip boundary condition of thin polymer films. Journal of Chemical Physics, 2017, 146, 203326.	1.2	4
10	Nucleated dewetting in supported ultra-thin liquid films with hydrodynamic slip. Soft Matter, 2017, 13, 4756-4760.	1.2	7
11	Morphological evolution of microscopic dewetting droplets with slip. Journal of Fluid Mechanics, 2017, 828, 271-288.	1.4	9
12	Contact Dependence and Velocity Crossover in Friction between Microscopic Solid/Solid Contacts. Nano Letters, 2017, 17, 6335-6339.	4.5	5
13	Short chains enhance slip of highly entangled polystyrenes during thin film dewetting. RSC Advances, 2016, 6, 91163-91170.	1.7	7
14	Controlling Marangoni-induced instabilities in spin-cast polymer films: How to prepare uniform films. European Physical Journal E, 2016, 39, 90.	0.7	34
15	Slip-mediated dewetting of polymer microdroplets. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 1168-1173.	3.3	24
16	Influence of slip on the Plateau–Rayleigh instability on a fibre. Nature Communications, 2015, 6, 7409.	5.8	76
17	Sacrificial mica substrates influence the slip boundary condition of dewetting polymer films. Polymer, 2015, 78, 202-207.	1.8	3
18	A Direct Quantitative Measure of Surface Mobility in a Glassy Polymer. Science, 2014, 343, 994-999.	6.0	192

#	Article	IF	CITATIONS
19	Nanofluidics of thin polymer films: Linking the slip boundary condition at solid–liquid interfaces to macroscopic pattern formation and microscopic interfacial properties. Advances in Colloid and Interface Science, 2014, 210, 13-20.	7.0	13
20	Relaxation and intermediate asymptotics of a rectangular trench in a viscous film. Physical Review E, 2013, 88, 035001.	0.8	14
21	Capillary leveling of stepped films with inhomogeneous molecular mobility. Soft Matter, 2013, 9, 8297.	1.2	11
22	Relaxation of non-equilibrium entanglement networks in thin polymer films. European Physical Journal E, 2013, 36, 7.	0.7	19
23	Self-Similarity and Energy Dissipation in Stepped Polymer Films. Physical Review Letters, 2012, 109, 128303.	2.9	47
24	Capillary-driven flow induced by a stepped perturbation atop a viscous film. Physics of Fluids, 2012, 24, .	1.6	30
25	Reduced Glass Transition Temperatures in Thin Polymer Films: Surface Effect or Artifact?. Physical Review Letters, 2012, 109, 055701.	2.9	151
26	Beyond Tanner's Law: Crossover between Spreading Regimes of a Viscous Droplet on an Identical Film. Physical Review Letters, 2012, 109, 154501.	2.9	34
27	Step Edges in Thin Films of Lamellar-Forming Diblock Copolymer. Macromolecules, 2012, 45, 9531-9538.	2.2	21
28	Numerical solutions of thin-film equations for polymer flows. European Physical Journal E, 2012, 35, 114.	0.7	30
29	Capillary levelling as a probe of thin film polymer rheology. Soft Matter, 2011, 7, 7832.	1.2	28
30	Dynamics of interacting edge defects in copolymer lamellae. European Physical Journal E, 2011, 34, 1-7.	0.7	7
31	Swelling molecular entanglement networks in polymer glasses. Physical Review E, 2010, 82, 021802.	0.8	8
32	Plateau-Rayleigh instability in a torus: formation and breakup of a polymer ring. Soft Matter, 2010, 6, 1258.	1.2	56
33	Al-M (M=Cr,â€,Fe,â€,Mn,â€,Ni) Thin-Film Negative Electrode Materials. Journal of the Electrochemical Society, 2006, 153, A484.	1.3	41
34	Mössbauer effect and X-ray diffraction investigation of Si–Fe thin films. Philosophical Magazine, 2006, 86, 5017-5030.	0.7	16