Federico Cremisi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9538919/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	MicroRNAs regulatory networks governing the epigenetic landscape of MEN1 gastroâ€enteroâ€pancreatic neuroendocrine tumor: A case report. Clinical and Translational Medicine, 2021, 11, e351.	4.0	4
2	Assessing Pattern Recognition Performance of Neuronal Cultures through Accurate Simulation. , 2021, , .		2
3	A eutherian-specific microRNA controls the translation of Satb2 in a model of cortical differentiation. Stem Cell Reports, 2021, 16, 1496-1509.	4.8	8
4	COTAN: scRNA-seq data analysis based on gene co-expression. NAR Genomics and Bioinformatics, 2021, 3, lqab072.	3.2	11
5	miR-182-5p is an evolutionarily conserved Tbx5 effector that impacts cardiac development and electrical activity in zebrafish. Cellular and Molecular Life Sciences, 2020, 77, 3215-3229.	5.4	12
6	Lysosome Dynamic Properties during Neuronal Stem Cell Differentiation Studied by Spatiotemporal Fluctuation Spectroscopy and Organelle Tracking. International Journal of Molecular Sciences, 2020, 21, 3397.	4.1	8
7	Pluripotent Stem Cells for Brain Repair: Protocols and Preclinical Applications in Cortical and Hippocampal Pathologies. Frontiers in Neuroscience, 2019, 13, 684.	2.8	9
8	Neurons Generated by Mouse ESCs with Hippocampal or Cortical Identity Display Distinct Projection Patterns When Co-transplanted in the Adult Brain. Stem Cell Reports, 2018, 10, 1016-1029.	4.8	19
9	The microRNA miR-21 Is a Mediator of FGF8 Action on Cortical COUP-TFI Translation. Stem Cell Reports, 2018, 11, 756-769.	4.8	11
10	Post-transcriptional Modulation of Sphingosine-1-Phosphate Receptor 1 by miR-19a Affects Cardiovascular Development in Zebrafish. Frontiers in Cell and Developmental Biology, 2018, 6, 58.	3.7	9
11	Assessment of antibody library diversity through next generation sequencing and technical error compensation. PLoS ONE, 2017, 12, e0177574.	2.5	17
12	RISC-mediated control of selected chromatin regulators stabilizes ground state pluripotency of mouse embryonic stem cells. Genome Biology, 2016, 17, 94.	8.8	12
13	MicroRNA 19a replacement partially rescues fin and cardiac defects in zebrafish model of Holt Oram syndrome. Scientific Reports, 2015, 5, 18240.	3.3	21
14	Activin/Nodal Signaling Supports Retinal Progenitor Specification in a Narrow Time Window during Pluripotent Stem Cell Neuralization. Stem Cell Reports, 2015, 5, 532-545.	4.8	20
15	Noggin-Mediated Retinal Induction Reveals a Novel Interplay Between Bone Morphogenetic Protein Inhibition, Transforming Growth Factor β, and Sonic Hedgehog Signaling. Stem Cells, 2015, 33, 2496-2508.	3.2	5
16	The double inhibition of endogenously produced BMP and <scp>W</scp> nt factors synergistically triggers dorsal telencephalic differentiation of mouse ES cells. Developmental Neurobiology, 2015, 75, 66-79.	3.0	16
17	From pluripotency to forebrain patterning: an in vitro journey astride embryonic stem cells. Cellular and Molecular Life Sciences, 2014, 71, 2917-2930.	5.4	23
18	The positional identity of mouse ES cell-generated neurons is affected by BMP signaling. Cellular and Molecular Life Sciences, 2013, 70, 1095-1111.	5.4	29

Federico Cremisi

#	Article	IF	CITATIONS
19	MicroRNAs and cell fate in cortical and retinal development. Frontiers in Cellular Neuroscience, 2013, 7, 141.	3.7	37
20	MicroRNA 218 Mediates the Effects of Tbx5a Over-Expression on Zebrafish Heart Development. PLoS ONE, 2012, 7, e50536.	2.5	69
21	Timing neurogenesis by cell cycle?. Cell Cycle, 2010, 9, 434-435.	2.6	9
22	MicroRNAs couple cell fate and developmental timing in retina. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 21179-21184.	7.1	124
23	Noggin Elicits Retinal Fate in <i>Xenopus</i> Animal Cap Embryonic Stem Cells. Stem Cells, 2009, 27, 2146-2152.	3.2	29
24	miR-290 acts as a physiological effector of senescence in mouse embryo fibroblasts. Physiological Genomics, 2009, 39, 210-218.	2.3	34
25	microRNA(interference) networks are embedded in the gene regulatory networks. Cell Cycle, 2008, 7, 2458-2461.	2.6	24
26	Dicer inactivation causes heterochronic retinogenesis in Xenopus laevis. International Journal of Developmental Biology, 2008, 52, 1099-1103.	0.6	31
27	A specific box switches the cell fate determining activity of XOTX2 and XOTX5b in the Xenopus retina. Neural Development, 2007, 2, 12.	2.4	4
28	Dystroglycan is required for proper retinal layering. Developmental Biology, 2006, 290, 411-420.	2.0	30
29	Cloning and developmental expression of the Xenopus homeobox gene Xvsx1. Development Genes and Evolution, 2006, 216, 829-34.	0.9	27
30	Timing the Generation of Distinct Retinal Cells by Homeobox Proteins. PLoS Biology, 2006, 4, e272.	5.6	42
31	5-HT2B-mediated serotonin signaling is required for eye morphogenesis in Xenopus. Molecular and Cellular Neurosciences, 2005, 29, 299-312.	2.2	24
32	Organizing the Eye. , 2004, , 257-278.		4
33	Cell cycle and cell fate interactions in neural development. Current Opinion in Neurobiology, 2003, 13, 26-33.	4.2	106
34	Xrx1 controls proliferation and multipotency of retinal progenitors. Molecular and Cellular Neurosciences, 2003, 22, 25-36.	2.2	60
35	<i>Xrx1</i> controls proliferation and neurogenesis in <i>Xenopus</i> anterior neural plate. Development (Cambridge), 2003, 130, 5143-5155.	2.5	69
36	Emx2 Promotes Symmetric Cell Divisions and a Multipotential Fate in Precursors from the Cerebral Cortex. Molecular and Cellular Neurosciences, 2001, 18, 485-502.	2.2	105

Federico Cremisi

#	Article	IF	CITATIONS
37	Cadmium-induced apoptosis in murine fibroblasts is suppressed by Bcl-2. Archives of Toxicology, 2001, 75, 313-320.	4.2	29
38	In vivo PC3 overexpression by retroviral vector affects cell differentiation of rat cortical precursors. Developmental Brain Research, 2001, 128, 181-185.	1.7	4
39	PC3 overexpression affects the pattern of cell division of rat cortical precursors. Mechanisms of Development, 2000, 90, 17-28.	1.7	36
40	Expression of the PC4 gene in the developing rat nervous system. Brain Research, 1996, 707, 293-297.	2.2	17
41	TrkA, TrkB and p75 mRNA expression is developmentally regulated in the rat retina. Brain Research, 1995, 704, 121-124.	2.2	70
42	Monocular deprivation decreases the expression of messenger RNA for brain-derived neurotrophic factor in the rat visual cortex. Neuroscience, 1995, 69, 1133-1144.	2.3	126
43	A developmentally regulated nerve growth factor-induced gene, VGF, is expressed in geniculocortical afferents during synaptogenesis. Neuroscience, 1995, 65, 997-1008.	2.3	39
44	Developmental expression of PC3 gene is correlated with neuronal cell birthday. Mechanisms of Development, 1994, 47, 127-137.	1.7	45
45	A newt ribozyme: a catalytic activity in search of a function Proceedings of the National Academy of Sciences of the United States of America, 1992, 89, 1651-1655.	7.1	27
46	Two dispersed highly repeated DNA families of Triturus vulgaris meridionalis (Amphibia, Urodela) are widely conserved among Salamandridae. Chromosoma, 1991, 100, 87-96.	2.2	17
47	Evolution of highly repeated DNA within the genusTriturus (Amphibia, Urodela). Cytotechnology, 1988, 1, 185-188.	1.6	3
48	Heterochromatic DNA in Triturus (Amphibia, Urodela). Chromosoma, 1988, 97, 204-211.	2.2	32