Patrick Lemaire

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9538888/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The Draft Genome of <i>Ciona intestinalis</i> : Insights into Chordate and Vertebrate Origins. Science, 2002, 298, 2157-2167.	12.6	1,539
2	DNA-Binding Specificities of Human Transcription Factors. Cell, 2013, 152, 327-339.	28.9	1,085
3	Expression cloning of Siamois, a xenopus homeobox gene expressed in dorsal-vegetal cells of blastulae and able to induce a complete secondary axis. Cell, 1995, 81, 85-94.	28.9	507
4	Neural Tissue in Ascidian Embryos Is Induced by FGF9/16/20, Acting via a Combination of Maternal GATA and Ets Transcription Factors. Cell, 2003, 115, 615-627.	28.9	290
5	Neural induction in Xenopus requires early FGF signalling in addition to BMP inhibition. Development (Cambridge), 2005, 132, 299-310.	2.5	249
6	Improved genome assembly and evidence-based global gene model set for the chordate Ciona intestinalis: new insight into intron and operon populations. Genome Biology, 2008, 9, R152.	9.6	192
7	Sequential Activation of Apical and Basolateral Contractility Drives Ascidian Endoderm Invagination. Current Biology, 2010, 20, 1499-1510.	3.9	188
8	The vertebrate organizer: structure and molecules. Trends in Genetics, 1996, 12, 525-531.	6.7	167
9	Induction of anterior neural fates in the ascidian Ciona intestinalis. Mechanisms of Development, 2001, 100, 189-203.	1.7	157
10	Evolutionary crossroads in developmental biology: the tunicates. Development (Cambridge), 2011, 138, 2143-2152.	2.5	157
11	A Quantitative Approach to the Study of Cell Shapes and Interactions during Early Chordate Embryogenesis. Current Biology, 2006, 16, 345-358.	3.9	135
12	A phylogenomic framework and timescale for comparative studies of tunicates. BMC Biology, 2018, 16, 39.	3.8	133
13	Unfolding a chordate developmental program, one cell at a time: Invariant cell lineages, short-range inductions and evolutionary plasticity in ascidians. Developmental Biology, 2009, 332, 48-60.	2.0	127
14	Formation of the Ascidian Epidermal Sensory Neurons: Insights into the Origin of the Chordate Peripheral Nervous System. PLoS Biology, 2006, 4, e225.	5.6	124
15	A two-step model for the fate determination of presumptive endodermal blastomeres in Xenopus embryos. Current Biology, 1999, 9, 869-879.	3.9	119
16	A combinatorial code of maternal GATA, Ets and β-catenin-TCF transcription factors specifies and patterns the early ascidian ectoderm. Development (Cambridge), 2007, 134, 4023-4032.	2.5	116
17	A Multicassette Gateway Vector Set for High Throughput and Comparative Analyses in Ciona and Vertebrate Embryos. PLoS ONE, 2007, 2, e916.	2.5	113
18	Ascidians and the Plasticity of the Chordate Developmental Program. Current Biology, 2008, 18, R620-R631.	3.9	112

PATRICK LEMAIRE

#	Article	IF	CITATIONS
19	A conserved role for the MEK signalling pathway in neural tissue specification and posteriorisation in the invertebrate chordate, the ascidianCiona intestinalis. Development (Cambridge), 2003, 130, 147-159.	2.5	106
20	The ANISEED database: Digital representation, formalization, and elucidation of a chordate developmental program. Genome Research, 2010, 20, 1459-1468.	5.5	105
21	Esx1,a Novel X Chromosome-Linked Homeobox Gene Expressed in Mouse Extraembryonic Tissues and Male Germ Cells. Developmental Biology, 1997, 188, 85-95.	2.0	101
22	THE NEUROBIOLOGY OF THE ASCIDIAN TADPOLE LARVA: Recent Developments in an Ancient Chordate. Annual Review of Neuroscience, 2004, 27, 453-485.	10.7	97
23	ANISEED 2017: extending the integrated ascidian database to the exploration and evolutionary comparison of genome-scale datasets. Nucleic Acids Research, 2018, 46, D718-D725.	14.5	90
24	Contact area–dependent cell communication and the morphological invariance of ascidian embryogenesis. Science, 2020, 369, .	12.6	89
25	Making very similar embryos with divergent genomes: conservation of regulatory mechanisms of Otx between the ascidians Halocynthia roretzi and Ciona intestinalis. Development (Cambridge), 2005, 132, 1663-1674.	2.5	73
26	ANISEED 2015: a digital framework for the comparative developmental biology of ascidians. Nucleic Acids Research, 2016, 44, D808-D818.	14.5	68
27	Guidelines for the nomenclature of genetic elements in tunicate genomes. Genesis, 2015, 53, 1-14.	1.6	59
28	A cis-Regulatory Signature in Ascidians and Flies, Independent of Transcription Factor Binding Sites. Current Biology, 2010, 20, 792-802.	3.9	58
29	Evolution of Brachyury proteins: identification of a novel regulatory domain conserved within Bilateria. Developmental Biology, 2003, 260, 352-361.	2.0	54
30	Ci-FoxA-a is the earliest zygotic determinant of the ascidian anterior ectoderm and directly activates Ci-sFRP1/5. Development (Cambridge), 2006, 133, 2835-2844.	2.5	53
31	Divergent functions of two ancient <i>Hydra Brachyury</i> paralogues suggest specific roles for their C-terminal domains in tissue fate induction. Development (Cambridge), 2007, 134, 4187-4197.	2.5	53
32	Antagonizing Retinoic Acid and FGF/MAPK Pathways Control Posterior Body Patterning in the Invertebrate Chordate Ciona intestinalis. PLoS ONE, 2012, 7, e46193.	2.5	48
33	An Otx/Nodal Regulatory Signature for Posterior Neural Development in Ascidians. PLoS Genetics, 2014, 10, e1004548.	3.5	42
34	Role of Goosecoid, Xnot and Wnt antagonists in the maintenance of the notochord genetic programme in <i>Xenopus</i> gastrulae. Development (Cambridge), 2001, 128, 3783-3793.	2.5	42
35	Cellular morphogenesis in ascidians: how to shape a simple tadpole. Current Opinion in Genetics and Development, 2006, 16, 399-405.	3.3	40
36	Convergent Acquisition of Nonembryonic Development in Styelid Ascidians. Molecular Biology and Evolution, 2018, 35, 1728-1743.	8.9	35

PATRICK LEMAIRE

#	Article	IF	CITATIONS
37	MorphoNet: an interactive online morphological browser to explore complex multi-scale data. Nature Communications, 2019, 10, 2812.	12.8	35
38	The community effect, dorsalization and mesoderm induction. Current Opinion in Genetics and Development, 1993, 3, 662-667.	3.3	30
39	ANISEED 2019: 4D exploration of genetic data for an extended range of tunicates. Nucleic Acids Research, 2020, 48, D668-D675.	14.5	30
40	Evolution of embryonic cis-regulatory landscapes between divergent Phallusia and Ciona ascidians. Developmental Biology, 2019, 448, 71-87.	2.0	29
41	The human chordin gene encodes several differentially expressed spliced variants with distinct BMP opposing activities. Mechanisms of Development, 2001, 106, 85-96.	1.7	28
42	Antagonist activity of DWnt-4 and wingless in the Drosophila embryonic ventral ectoderm and in heterologous Xenopus assays. Mechanisms of Development, 1999, 85, 123-131.	1.7	27
43	Highly Divergent Gene Expression Programs Can Lead to Similar Chordate Larval Body Plans. Current Biology, 2009, 19, 2014-2019.	3.9	26
44	Thaliaceans, The Neglected Pelagic Relatives of Ascidians: A Developmental and Evolutionary Enigma. Quarterly Review of Biology, 2015, 90, 117-145.	0.1	25
45	Crème de la Kremen of Wnt signalling inhibition. Nature Cell Biology, 2002, 4, E172-E172.	10.3	24
46	Highly conserved elements discovered in vertebrates are present in non-syntenic loci of tunicates, act as enhancers and can be transcribed during development. Nucleic Acids Research, 2013, 41, 3600-3618.	14.5	24
47	Control of gastrula cell motility by the <i>Goosecoid</i> / <i>Mix.1</i> / <i>Siamois</i> network: Basic patterns and paradoxical effects. Developmental Dynamics, 2008, 237, 1307-1320.	1.8	22
48	Developmental signalling: A careful balancing act. Current Biology, 1998, 8, R228-R231.	3.9	21
49	Cytoplasmic intermediate filament protein expression in tunicate development: a specific marker for the test cells. European Journal of Cell Biology, 2002, 81, 302-311.	3.6	21
50	A pipeline for the systematic identification of non-redundant full-ORF cDNAs for polymorphic and evolutionary divergent genomes: Application to the ascidian Ciona intestinalis. Developmental Biology, 2015, 404, 149-163.	2.0	20
51	Tunicates: exploring the sea shores and roaming the open ocean. A tribute to Thomas Huxley. Open Biology, 2015, 5, 150053.	3.6	16
52	Vertebrate embryonic inductions. BioEssays, 1994, 16, 617-620.	2.5	15
53	The coming of age of ventralising homeobox genes in amphibian development. BioEssays, 1996, 18, 701-704.	2.5	15
54	Embryonic induction: Is the Nieuwkoop centre a useful concept?. Current Biology, 1998, 8, R918-R921.	3.9	15

PATRICK LEMAIRE

#	Article	IF	CITATIONS
55	Siamois functions in the early blastula to induce Spemann's organiser. Mechanisms of Development, 2001, 108, 71-79.	1.7	15
56	High-Throughput Protein Production Combined with High- Throughput SELEX Identifies an Extensive Atlas of Ciona robusta Transcription Factor DNA-Binding Specificities. Methods in Molecular Biology, 2019, 2025, 487-517.	0.9	15
57	Genome-wide survey of miRNAs and their evolutionary history in the ascidian, Halocynthia roretzi. BMC Genomics, 2017, 18, 314.	2.8	13
58	A genome database for a Japanese population of the larvacean Oikopleura dioica. Development Growth and Differentiation, 2020, 62, 450-461.	1.5	13
59	DEVELOPMENTAL BIOLOGY: How Many Ways to Make a Chordate?. Science, 2006, 312, 1145-1146.	12.6	12
60	Time-Lapse Imaging of Live Phallusia Embryos for Creating 3D Digital Replicas. Cold Spring Harbor Protocols, 2011, 2011, pdb.prot065847-pdb.prot065847.	0.3	12
61	Assaying Chromatin Accessibility Using ATAC-Seq in Invertebrate Chordate Embryos. Frontiers in Cell and Developmental Biology, 2020, 7, 372.	3.7	12
62	Similar regulatory logic in Ciona intestinalis for two Wnt pathway modulators, ROR and SFRP-1/5. Developmental Biology, 2009, 329, 364-373.	2.0	9
63	A Nodal/Eph signalling relay drives the transition from apical constriction to apico-basal shortening in ascidian endoderm invagination. Development (Cambridge), 2020, 147, .	2.5	9
64	Creating 3D Digital Replicas of Ascidian Embryos from Stacks of Confocal Images. Cold Spring Harbor Protocols, 2011, 2011, pdb.prot065862.	0.3	7
65	Imaging of Fixed <i>Ciona</i> Embryos for Creating 3D Digital Replicas. Cold Spring Harbor Protocols, 2011, 2011, pdb.prot065854.	0.3	5
66	Transcriptional regulation of the Ciona Gsx gene in the neural plate. Developmental Biology, 2019, 448, 88-100.	2.0	5
67	Mechanical and genetic control of ascidian endoderm invagination during gastrulation. Seminars in Cell and Developmental Biology, 2021, 120, 108-118.	5.0	5
68	Functional analysis of <i>synaptotagmin</i> gene regulatory regions in two distantly related ascidian species. Development Growth and Differentiation, 2008, 50, 543-552.	1.5	4
69	No muscles, but what a brain. Nature, 1992, 359, 586-587.	27.8	3
70	Chapter 3 Myogenesis in Xenopus Embryos. Methods in Cell Biology, 1997, 52, 53-66.	1.1	3
71	Protein kinases and protein phosphatases encoded in the <i>Ciona robusta</i> genome. Genesis, 2022, 60, e23471.	1.6	2
72	Methods for the Study of Apical During Ascidian. Methods in Molecular Biology, 2022, 2438, 377-413.	0.9	0