Om Parkash Malik

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9538858/publications.pdf

Version: 2024-02-01

198 papers 4,742 citations

36 h-index 58 g-index

200 all docs

 $\begin{array}{c} 200 \\ \\ \text{docs citations} \end{array}$

200 times ranked

2082 citing authors

#	Article	IF	CITATIONS
1	Voltage-Assisted Sequence Current-Based Pilot Relaying for Lines With/Without TCSC. IEEE Transactions on Power Delivery, 2022, 37, 1502-1512.	2.9	7
2	Synchrophasor Assisted Power Swing Detection Scheme for Wind Integrated Transmission Network. IEEE Transactions on Power Delivery, 2022, 37, 1952-1962.	2.9	8
3	Taylor series based protection starting element for STATCOM compensated transmission line. Electric Power Systems Research, 2022, 204, 107700.	2.1	2
4	Adaptive Third-Zone Distance Protection Scheme for Power System Critical Conditions. IEEE Transactions on Power Delivery, 2021, 36, 1401-1410.	2.9	10
5	Energy management system for two islanded interconnected micro-grids using advanced evolutionary algorithms. Electric Power Systems Research, 2021, 192, 106958.	2.1	18
6	Adaptive control strategy for improved dynamic performance of two islanded inter-connected micro-grids. International Journal of Electrical Power and Energy Systems, 2021, 126, 106562.	3.3	7
7	Development of Time-Frequency Based Approach to Detect High Impedance Fault in an Inverter Interfaced Distribution System. IEEE Transactions on Power Delivery, 2021, 36, 3825-3833.	2.9	28
8	Integrated Wide-Area Backup Protection Algorithm During Stressed Power System Condition in Presence of Wind Farm. Arabian Journal for Science and Engineering, 2021, 46, 9363-9376.	1.7	5
9	Rooted Tree Optimization Algorithm to Improve DTC Response of DFIM. Journal of Electrical Engineering and Technology, 2021, 16, 2463-2483.	1.2	3
10	Algorithm to Prevent Breaker-Failure Protection Maloperation Due to Subsidence Current. IEEE Transactions on Industry Applications, 2021, 57, 3487-3499.	3.3	2
11	Performance of Ratiosâ€Based Transformer Differential Protection Scheme in the Presence of Resistive Superconductor Fault Current Limiter. IEEE Transactions on Applied Superconductivity, 2021, 31, 1-10.	1.1	1
12	Efficient Self-Tuned Fuzzy Logic Based Power System Stabilizer. Electric Power Components and Systems, 2021, 49, 79-93.	1.0	1
13	Binary Spring Search Algorithm for Solving Various Optimization Problems. Applied Sciences (Switzerland), 2021, 11, 1286.	1.3	34
14	Fuzzy PI controllerâ€based model reference adaptive control for voltage control of two connected microgrids. IET Generation, Transmission and Distribution, 2021, 15, 602-618.	1.4	7
15	On-line self-tuning adaptive control of an inverter in a grid-tied micro-grid. Electric Power Systems Research, 2020, 178, 106045.	2.1	9
16	Study of the Impact of Switching Transient Overvoltages on Ferroresonance of CCVT in Series and Shunt Compensated Power Systems. IEEE Transactions on Industrial Informatics, 2020, 16, 5032-5041.	7.2	10
17	KPCA and AE Based Local-Global Feature Extraction Method for Vibration Signals of Rotating Machinery. Mathematical Problems in Engineering, 2020, 2020, 1-17.	0.6	9
18	Genetic Algorithm for Energy Commitment in a Power System Supplied by Multiple Energy Carriers. Sustainability, 2020, 12, 10053.	1.6	18

#	Article	IF	CITATIONS
19	Solving Economic Dispatch Problem Using a New Hybrid PSO-ALO Algorithm. , 2020, , .		3
20	A Spring Search Algorithm Applied to Engineering Optimization Problems. Applied Sciences (Switzerland), 2020, 10, 6173.	1.3	105
21	Energy Commitment for a Power System Supplied by Multiple Energy Carriers System using Following Optimization Algorithm. Applied Sciences (Switzerland), 2020, 10, 5862.	1.3	16
22	A New "Doctor and Patient―Optimization Algorithm: An Application to Energy Commitment Problem. Applied Sciences (Switzerland), 2020, 10, 5791.	1.3	42
23	DM: Dehghani Method for Modifying Optimization Algorithms. Applied Sciences (Switzerland), 2020, 10, 7683.	1.3	28
24	Ratios-based universal differential protection algorithm for power transformer. Electric Power Systems Research, 2020, 186, 106383.	2.1	8
25	Hardware implementation of an improved control strategy for battery–supercapacitor hybrid system in electric vehicles. IET Electrical Systems in Transportation, 2020, 10, 204-212.	1.5	8
26	Global Trends and Advances Towards a Smarter Grid and Smart Cities. Future Internet, 2020, 12, 37.	2.4	1
27	Quartile Based Differential Protection of Power Transformer. IEEE Transactions on Power Delivery, 2020, 35, 2447-2458.	2.9	19
28	Optimal Sizing and Placement of Capacitor Banks and Distributed Generation in Distribution Systems Using Spring Search Algorithm. International Journal of Emerging Electric Power Systems, 2020, 21, .	0.6	47
29	A NEW METHODOLOGY CALLED DICE GAME OPTIMIZER FOR CAPACITOR PLACEMENT IN DISTRIBUTION SYSTEMS. Electrical Engineering & Electromechanics, 2020, .	0.4	29
30	GO: Group Optimization. Gazi University Journal of Science, 2020, 33, 381-392.	0.6	17
31	Experimental results of ratiosâ€based transformer differential protection scheme. International Transactions on Electrical Energy Systems, 2019, 29, e12114.	1.2	8
32	Third zone protection to discriminate symmetrical fault and stressed system conditions. International Transactions on Electrical Energy Systems, 2019, 29, e12121.	1.2	14
33	Assessment of inertial and primary frequency control from wind power plants in the Mexican electric power grid. Wiley Interdisciplinary Reviews: Energy and Environment, 2019, 8, e356.	1.9	1
34	Vehicle-To-Grid Technology in a Micro-grid Using DC Fast Charging Architecture. , 2019, , .		41
35	DTO: Donkey Theorem Optimization. , 2019, , .		11
36	Feature Extraction Based on Adaptive Multiwavelets and LTSA for Rotating Machinery Fault Diagnosis. Shock and Vibration, 2019, 2019, 1-15.	0.3	7

#	Article	lF	CITATIONS
37	Intelligent control of a brushless doubly-fed induction generator. International Journal of Systems Assurance Engineering and Management, 2019, 10, 326-338.	1.5	5
38	Accurate Parameter Estimation of a Hydro-Turbine Regulation System Using Adaptive Fuzzy Particle Swarm Optimization. Energies, 2019, 12, 3903.	1.6	14
39	A New Internal Fault Detection and Classification Technique for Synchronous Generator. IEEE Transactions on Power Delivery, 2019, 34, 739-749.	2.9	25
40	Feature extraction of rotor fault based on EEMD and curve code. Measurement: Journal of the International Measurement Confederation, 2019, 135, 712-724.	2.5	35
41	ENERGY COMMITMENT: A PLANNING OF ENERGY CARRIER BASED ON ENERGY CONSUMPTION. Electrical Engineering & Electromechanics, 2019, .	0.4	20
42	DGO: Dice Game Optimizer. Gazi University Journal of Science, 2019, 32, 871-882.	0.6	31
43	A New Internal Fault Detection and Classification Technique for Synchronous Generator., 2019,,.		0
44	Integrated Transverse Differential Protection Scheme for Double-Circuit Lines on the Same Tower. IEEE Transactions on Power Delivery, 2018, 33, 2161-2169.	2.9	20
45	Hilbert Huang Transform Based Online Differential Relay Algorithm for a Shunt-Compensated Transmission Line. IEEE Transactions on Power Delivery, 2018, 33, 2803-2811.	2.9	56
46	Power transformer differential protection using current and voltage ratios. Electric Power Systems Research, 2018, 154, 140-150.	2.1	55
47	Impact Assessment of a VSC-HVDC Link on the Oscillation Modes of a Multi-machine System., 2018,,.		0
48	Battery Energy Storage for Frequency Support in the BCS Electric Power System., 2018,,.		6
49	Integrated approach based third zone protection during stressed system conditions. Electric Power Systems Research, 2018, 161, 199-211.	2.1	18
50	Fuzzy logic field oriented control of double star induction motor drive. Electrical Engineering, 2017, 99, 495-503.	1.2	18
51	Fault diagnosis of rotor using EMD thresholding-based de-noising combined with probabilistic neural network. Journal of Vibroengineering, 2017, 19, 5920-5931.	0.5	16
52	Coordinated design of fuzzy supplementary controllers for generator and STATCOM voltage regulators using bat algorithm optimization. International Transactions on Electrical Energy Systems, 2016, 26, 1847-1862.	1.2	12
53	Failure rate estimation of power transformers using inspection data. , 2016, , .		7
54	Harmonic Optimization in Voltage Source Inverter for PV Application using Heuristic Algorithms. International Journal of Emerging Electric Power Systems, 2016, 17, 671-682.	0.6	5

#	Article	IF	CITATIONS
55	Identification of closed-loop non-linear systems with structure optimization. Transactions of the Institute of Measurement and Control, 2016, 38, 182-191.	1.1	4
56	ACO-Initialized Wavelet Neural Network for Vibration Fault Diagnosis of Hydroturbine Generating Unit. Mathematical Problems in Engineering, 2015, 2015, 1-7.	0.6	4
57	Simultaneous tuning of fuzzy power system stabilizers using Bat optimization Algorithm. , 2015, , .		1
58	Closed-loop non-parametric model identification of synchronous generator using NARX polynomials. International Transactions on Electrical Energy Systems, 2015, 25, 2639-2656.	1.2	0
59	Feature extraction using adaptive multiwavelets and synthetic detection index for rotor fault diagnosis of rotating machinery. Mechanical Systems and Signal Processing, 2015, 52-53, 393-415.	4.4	34
60	Evolution of Power Systems into Smarter Networks. Journal of Control, Automation and Electrical Systems, 2013, 24, 139-147.	1.2	10
61	Study of characteristics of wind turbine PMSG with reduced switches count converters. , 2013, , .		10
62	Adaptive neuro-fuzzy controller based on simplified ANFIS network., 2012,,.		1
63	Experimental Platform for Controlled Faults on Synchronous Generator Armature Windings. IEEE Transactions on Energy Conversion, 2012, 27, 948-957.	3.7	7
64	Multiple Model Predictive Control for Wind Turbines With Doubly Fed Induction Generators. IEEE Transactions on Sustainable Energy, 2011, 2, 215-225.	5.9	169
65	Adaptive PSS using a simple on-line identifier and linear pole-shift controller. Electric Power Systems Research, 2010, 80, 406-416.	2.1	26
66	Self-tuned Power System Stabilizer Based on a Simple Fuzzy Logic Controller. Electric Power Components and Systems, 2010, 38, 407-423.	1.0	20
67	Multiple model MIMO predictive control for variable speed variable pitch wind turbines. , 2010, , .		38
68	Design and implementation of power system stabilizers based on evolutionary algorithms. , 2009, , .		11
69	Synchronous machine model identification using continuous wavelet NARX network. Proceedings of the Institution of Mechanical Engineers Part I: Journal of Systems and Control Engineering, 2009, 223, 467-477.	0.7	3
70	Design of an Adaptive PSS Based on Recurrent Adaptive Control Theory. IEEE Transactions on Energy Conversion, 2009, 24, 884-892.	3.7	23
71	Laboratory Investigation of Using Wi-Fi Protocol for Transmission Line Differential Protection. IEEE Transactions on Power Delivery, 2009, 24, 1087-1094.	2.9	37
72	Protection of parallel transmission lines using Wi-Fi protocol. , 2008, , .		1

#	Article	IF	Citations
73	Impedance algorithm for protection of power transformers. , 2008, , .		O
74	Neurofuzzy Power System Stabilizer. IEEE Transactions on Energy Conversion, 2008, 23, 887-894.	3.7	53
75	Exponential stabilization of LPV systems: An LMI approach. Canadian Conference on Electrical and Computer Engineering, 2008, , .	0.0	0
76	Application of Neural Networks in Transmission Line Protection. IEEE Power Engineering Society General Meeting, 2007, , .	0.0	3
77	RLS and Kalman Filter Identifiers Based Adaptive SVC Controller. , 2007, , .		7
78	Experimental Studies of a Generalized Neuron Based Adaptive Power System Stabilizer. Soft Computing, 2007, 11, 149-155.	2.1	13
79	GA-identifier and predictive controller for multi-machine power system. , 2006, , .		1
80	ADALINE Network Based Adaptive Controller for STATCOM. , 2006, , .		1
81	Adaptive fuzzy control of SSSC to improve damping of power system oscillations. , 2006, , .		4
82	Nonlinear state space modeling of a variable speed wind power generation system. , 2006, , .		1
83	Enhancement of power system dynamic performance through an on-line self-tuning adaptive SVC controller. Electric Power Systems Research, 2006, 76, 801-807.	2.1	23
84	Relative gain array and singular value decomposition in determination of PSS location. European Transactions on Electrical Power, 2005, 15, 397-412.	1.0	1
85	Discussion of "Adaptive Noncommunication Protection of Double Circuit Line Systems― IEEE Transactions on Power Delivery, 2005, 20, 538-538.	2.9	0
86	Transmission Line Distance Relaying Using On-Line Trained Neural Networks. IEEE Transactions on Power Delivery, 2005, 20, 1257-1264.	2.9	36
87	Synchronous Generator Model Identification for Control Application Using Volterra Series. IEEE Transactions on Energy Conversion, 2005, 20, 852-858.	3.7	36
88	Comprehensive Control Strategy for a Variable Speed Cage Machine Wind Generation Unit. IEEE Transactions on Energy Conversion, 2005, 20, 415-423.	3.7	84
89	High Impedance Fault Detection Based on Wavelet Transform and Statistical Pattern Recognition. IEEE Transactions on Power Delivery, 2005, 20, 2414-2421.	2.9	176
90	Generalized Neuron-Based Adaptive PSS for Multimachine Environment. IEEE Transactions on Power Systems, 2005, 20, 358-366.	4.6	47

#	Article	IF	Citations
91	Real-time optimal excitation controller using system identification. Australian Journal of Electrical and Electronics Engineering, 2004, $1,7-13$.	0.7	1
92	Experimental Studies With a Generalized Neuron-Based Power System Stabilizer. IEEE Transactions on Power Systems, 2004, 19, 1445-1453.	4.6	22
93	Singular Value Decomposition as a Measure for Control Structure Design in Power Systems. Electric Power Components and Systems, 2004, 32, 295-307.	1.0	3
94	Generalized Neuron Based Power System Stabilizer. Electric Power Components and Systems, 2004, 32, 467-490.	1.0	3
95	Performance of a Generalized Neuron-Based PSS in a Multimachine Power System. IEEE Transactions on Energy Conversion, 2004, 19, 625-632.	3.7	20
96	Protection of Parallel Transmission Lines Using Wavelet Transform. IEEE Transactions on Power Delivery, 2004, 19, 49-55.	2.9	100
97	Laboratory Investigation of a Distance-Protection Technique for Double Circuit Lines. IEEE Transactions on Power Delivery, 2004, 19, 1629-1635.	2.9	10
98	Identification of Physical Parameters of a Synchronous Generator From Online Measurements. IEEE Transactions on Energy Conversion, 2004, 19, 407-415.	3.7	111
99	Transmission Line Distance Protection Based on Wavelet Transform. IEEE Transactions on Power Delivery, 2004, 19, 515-523.	2.9	153
100	Intelligent automatic generation of graphical one-line substation arrangement diagrams. IEEE Transactions on Power Delivery, 2003, 18, 729-735.	2.9	12
101	Experimental results of a supplementary technique for auto-reclosing EHV/UHV transmission lines. IEEE Transactions on Power Delivery, 2002, 17, 702-707.	2.9	20
102	Studies for identification of the inrush based on improved correlation algorithm. IEEE Transactions on Power Delivery, 2002, 17, 901-907.	2.9	69
103	An H/sub 2/ optimal adaptive power system stabilizer. IEEE Transactions on Energy Conversion, 2002, 17, 143-149.	3.7	33
104	Wavelet based scheme for detection of torsional oscillation. IEEE Transactions on Power Systems, 2002, 17, 1096-1101.	4.6	16
105	Performance of sequence directional elements on MOV protected series compensated transmission lines. European Transactions on Electrical Power, 2002, 12, 53-61.	1.0	7
106	Wavelet transform approach to distance protection of transmission lines., 2001,,.		7
107	High speed accurate transmission line distance protection using ANNs., 2001,,.		3
108	Discussion of "Artificial neural network approach to single-ended fault locator for transmission lines. IEEE Transactions on Power Systems, 2001, 16, 949-950.	4.6	0

#	Article	IF	CITATIONS
109	A novel approach for auto-reclosing EHV/UHV transmission lines. IEEE Transactions on Power Delivery, 2000, 15, 908-912.	2.9	10
110	Fuzzy logic power system stabilizer based on genetically optimized adaptive network. Fuzzy Sets and Systems, 1999, 102, 31-40.	1.6	12
111	Direct neural adaptive control applied to synchronous generator. IEEE Transactions on Energy Conversion, 1999, 14, 1341-1346.	3.7	31
112	Application of neural adaptive power system stabilizer in a multi-machine power system. IEEE Transactions on Energy Conversion, 1999, 14, 731-736.	3.7	39
113	High speed transmission line directional protection evaluation using field data. IEEE Transactions on Power Delivery, 1999, 14, 851-856.	2.9	26
114	Implementation and laboratory test results of an Elman network-based transmission line directional relay. IEEE Transactions on Power Delivery, 1999, 14, 782-788.	2.9	23
115	Implementation and laboratory test results of an Elman network-based transmission line directional relay. , 1999, , .		0
116	Real-time implementation and experimental studies of a neural adaptive power system stabilizer. IEEE Transactions on Energy Conversion, 1999, 14, 737-742.	3.7	13
117	High speed transmission line directional protection evaluation using field data. , 1999, , .		0
118	An artificial neural network based digital differential protection scheme for synchronous generator stator winding protection. IEEE Transactions on Power Delivery, 1999, 14, 86-93.	2.9	43
119	Simulation of internal faults in synchronous generators. IEEE Transactions on Energy Conversion, 1999, 14, 1306-1311.	3.7	54
120	High speed transmission system directional protection using an Elman network. IEEE Transactions on Power Delivery, 1998, 13, 1040-1045.	2.9	35
121	A synchronous generator fuzzy excitation controller optimally designed with a genetic algorithm. IEEE Transactions on Power Systems, 1998, 13, 884-889.	4.6	36
122	A technique for optimal digital redesign of analog controllers. IEEE Transactions on Control Systems Technology, 1997, 5, 89-99.	3.2	78
123	An adaptive power system stabilizer using on-line trained neural networks. IEEE Transactions on Energy Conversion, 1997, 12, 382-387.	3.7	68
124	An adaptive power system stabilizer based on recurrent neural networks. IEEE Transactions on Energy Conversion, 1997, 12, 413-418.	3.7	81
125	A robust Power system stabilizer design. Optimal Control Applications and Methods, 1997, 18, 179-193.	1.3	5
126	A new digital directional transverse differential current protection technique. IEEE Transactions on Power Delivery, 1996, 11, 1285-1291.	2.9	73

#	Article	IF	Citations
127	A fuzzy logic based power system stabilizer with learning ability. IEEE Transactions on Energy Conversion, 1996, 11, 721-727.	3.7	73
128	Experimental studies with power system stabilizers on a physical model of a multimachine power system. IEEE Transactions on Power Systems, 1996, 11, 807-812.	4.6	12
129	Implementation of a fuzzy logic PSS using a micro-controller and experimental test results. IEEE Transactions on Energy Conversion, 1996, 11, 91-96.	3.7	63
130	Power system stabilizer design using \hat{l} /4 synthesis. IEEE Transactions on Energy Conversion, 1995, 10, 175-181.	3.7	68
131	Artificial neural network power system stabilizers in multi-machine power system environment. IEEE Transactions on Energy Conversion, 1995, 10, 147-155.	3.7	55
132	Implementation of adaptive speed control algorithms for diesel-driven power plants on a digital signal processor. International Journal of Control, 1994, 60, 467-481.	1.2	2
133	Application of an inverse input/output mapped ANN as a power system stabilizer. IEEE Transactions on Energy Conversion, 1994, 9, 433-441.	3.7	55
134	An artificial neural network based adaptive power system stabilizer. IEEE Transactions on Energy Conversion, 1993, 8, 71-77.	3.7	146
135	An adaptive power system stabilizer based on the self-optimizing pole shifting control strategy. IEEE Transactions on Energy Conversion, 1993, 8, 639-645.	3.7	104
136	Tests with a microcomputer based adaptive synchronous machine stabilizer on a 400 MW thermal unit. IEEE Transactions on Energy Conversion, 1993, 8, 6-12.	3.7	19
137	Improved operation of differential protection of power transformers for internal faults. IEEE Transactions on Power Delivery, 1992, 7, 1912-1919.	2.9	126
138	Analysis of the effect of regulators on power system damping using a sensitivity technique. Canadian Journal of Electrical and Computer Engineering, 1992, 17, 71-77.	1.5	1
139	A digital protection technique for parallel transmission lines using a single relay at each end. IEEE Transactions on Power Delivery, 1992, 7, 118-125.	2.9	55
140	Theory and Method for Selection of Power System Stabilizer Location. IEEE Power Engineering Review, 1991, 11, 45.	0.1	0
141	A microprocessor-based duplex fault-tolerant controller for industrial process control. Canadian Journal of Electrical and Computer Engineering, 1991, 16, 68-73.	1.5	5
142	Some issues on the practical use of recursive least squares identification in self-tuning control. International Journal of Control, 1991, 53, 1021-1033.	1.2	32
143	MIMO self-tuning power system stabilizer. International Journal of Control, 1991, 54, 815-829.	1.2	10
144	DIGITAL FILTERING METHODS IN MICROPROCESSOR BASED PROTECTIVE RELAYING. Electric Power Components and Systems, 1990, 18, 193-208.	0.1	1

#	Article	IF	CITATIONS
145	ADAPTIVE CONTROL OF A LABORATORY POWER SYSTEM. Electric Power Components and Systems, 1989, 17, 53-64.	0.1	2
146	Amplitude Comparator Based Algorithm for Directional Comparison Protection of Transmission Lines. IEEE Power Engineering Review, 1989, 9, 46-47.	0.1	17
147	Expert Systems in Electric Power Systems a Bibliographical Survey. IEEE Power Engineering Review, 1989, 9, 33-33.	0.1	2
148	Scheme for Accelerated Trip for Faults in the Second Zone of Protection of a Transmission Line. IEEE Power Engineering Review, 1989, 9, 53-54.	0.1	7
149	A self-tuning controller for the control of multi-machine power systems. IEEE Transactions on Power Systems, 1988, 3, 1065-1071.	4.6	47
150	High Speed Digital Directional Comparison Relaying. Electric Power Components and Systems, 1988, 15, 353-369.	0.1	1
151	Probabilistic approach to sizing electrical equipment for excavators in open-pit mines. International Journal of Mining, Reclamation and Environment, 1987, 1, 61-66.	0.1	0
152	A Multi-Micro-Computer based Dual-Rate Self-Tuning Power System Stabilizer. IEEE Transactions on Energy Conversion, 1987, EC-2, 355-360.	3.7	23
153	Probability Technique to Predict Power Demand of Excavator Group. IEEE Transactions on Industry Applications, 1986, IA-22, 91-96.	3.3	2
154	Microprocessor-based universal adaptive controllers. Canadian Electrical Engineering Journal, 1986, 11, 159-164.	0.1	2
155	An Adaptive Synchronous Machine Stabilizer. IEEE Transactions on Power Systems, 1986, 1, 101-107.	4.6	132
156	Probability Distributions of Active Power Demand a Design Approach. IEEE Transactions on Power Delivery, 1986, 1, 197-202.	2.9	4
157	POWER GENERATION CONTROL USING DUAL-MODE CONTROL. Electric Power Components and Systems, 1984, 9, 335-345.	0.1	7
158	Excitation Control of Synchronous Generators Using Adaptive Regulators Part I-Theory and Simulation Results. IEEE Transactions on Power Apparatus and Systems / Technical Operations Committee, 1984, PAS-103, 897-903.	0.4	60
159	Excitation Control of Synchronous Generators Using Adaptive Regulators-Part II Implementation and Test Results. IEEE Transactions on Power Apparatus and Systems / Technical Operations Committee, 1984, PAS-103, 904-910.	0.4	14
160	Sampled Data Automatic Generation Control Analysis with Reheat Steam Turbines and Governor Dead-Band Effects. IEEE Transactions on Power Apparatus and Systems / Technical Operations Committee, 1984, PAS-103, 1045-1051.	0.4	63
161	Microprocessor-Based Universal Regulator Using Dual-Rate Sampling. IEEE Transactions on Industrial Electronics, 1984, IE-31, 306-312.	5.2	6
162	A Computer Study of a Pid Automatic Voltage Regulator Part II: Digital Pid Voltage Regulator With Dynamically Varying Weighting Parameters. IEEE Transactions on Power Apparatus and Systems / Technical Operations Committee, 1983, PAS-102, 972-980.	0.4	8

#	Article	IF	Citations
163	Wind Energy Conversion Using A Self-Excited Induction Generator. IEEE Transactions on Power Apparatus and Systems / Technical Operations Committee, 1983, PAS-102, 3933-3936.	0.4	142
164	A self-tuning PID voltage regulator for synchronous generators. Canadian Electrical Engineering Journal, 1983, 8, 18-27.	0.1	5
165	A Computer Study of a PID Automatic Voltage Regulator, Part II: Digital PID Voltage Regulator with Dynamically Varying Weighting Parameters. IEEE Power Engineering Review, 1983, PER-3, 38-38.	0.1	0
166	Self-Tuning Microprocessor Universal Controller. IEEE Industrial Electronics Magazine, 1982, IE-29, 31-38.	2.3	25
167	Effect of control circuits on power system optimization. Canadian Electrical Engineering Journal, 1977, 2, 37-43.	0.1	0
168	Fast generator protection against internal asymmetrical faults. IEEE Transactions on Power Apparatus and Systems / Technical Operations Committee, 1977, 96, 1498-1506.	0.4	30
169	Digital technique for impedance protection of transmission lines. Canadian Electrical Engineering Journal, 1976, 1, 8-12.	0.1	10
170	Design and test results of a software based digital AVR. IEEE Transactions on Power Apparatus and Systems / Technical Operations Committee, 1976, 95, 634-642.	0.4	7
171	Transient stability and optimal control of parallel A.CD.C. power systems. IEEE Transactions on Power Apparatus and Systems / Technical Operations Committee, 1976, 95, 811-820.	0.4	17
172	A Digital Device to Measure Angular Speed and Torque Angle. IEEE Transactions on Industrial Electronics and Control Instrumentation, 1975, IECI-22, 186-188.	0.2	19
173	Experimental results on the implementation of an optimal control for synchronous machines. IEEE Transactions on Power Apparatus and Systems / Technical Operations Committee, 1975, 94, 1192-1200.	0.4	36
174	Studies on an SCR Controlled Variable Speed DC Shunt Motor. IEEE Transactions on Power Apparatus and Systems / Technical Operations Committee, 1974, PAS-93, 785-792.	0.4	8
175	Closed Loop Optimization of Power Systems with Two-Axis Excitation Control. IEEE Transactions on Power Apparatus and Systems / Technical Operations Committee, 1973, PAS-92, 167-176.	0.4	7
176	Digital Control Scheme for a Generating Unit. IEEE Transactions on Power Apparatus and Systems / Technical Operations Committee, 1973, PAS-92, 478-483.	0.4	23
177	Solution of non-linear optimization problems in power systemsâ€. International Journal of Control, 1973, 17, 1041-1058.	1.2	9
178	Synchronous machine field time constant regulator. Proceedings of the IEEE, 1973, 61, 1152-1153.	16.4	4
179	Unity power factor operation for 3-phase induction motors. , 0, , .		2
180	Adaptive-network-based fuzzy logic power system stabilizer. , 0, , .		10

#	Article	IF	CITATIONS
181	A dynamic emulator for power system control applications. , 0, , .		O
182	Thermal model based digital relaying algorithm for induction motor protection. , 0, , .		19
183	On-line identification of synchronous generator using neural networks. , 0, , .		30
184	Self-learning adaptive-network-based fuzzy logic power system stabilizer. , 0, , .		6
185	Experimental studies with a neural network eased power system stabilizer. , 0, , .		0
186	Direct neural adaptive control applied to synchronous generator., 0, , .		0
187	Simulation of internal faults in synchronous generators. , 0, , .		5
188	Performance evaluation of a new transmission line directional module using field data., 0,,.		1
189	An optimal adaptive power system stabilizer. , 0, , .		6
190	Online trained neuro-controller with a modified error function. , 0, , .		1
191	Genetic algorithm approach for adaptive data window distance relaying. , 0, , .		3
192	Fuzzy logic based identifier and pole-shifting controller for PSS application. , 0, , .		8
193	An adaptive power system stabilizer using on-line self-learning fuzzy systems. , 0, , .		28
194	Nonlinear state space identification of a synchronous generator. , 0, , .		3
195	Adaptive distance relaying technique using on-line trained neural network. , 0, , .		8
196	On-line trained neuro-fuzzy distance relay with directional element. , 0, , .		0
197	Synchronous generator model identification using Volterra series. , 0, , .		2
198	Intelligent SVC control for transient stability enhancement. , 0, , .		14