
James M Brenan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9538735/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Fluids in the lithosphere, 1. Experimentally-determined wetting characteristics of CO2H2O fluids and their implications for fluid transport, host-rock physical properties, and fluid inclusion formation. Earth and Planetary Science Letters, 1987, 85, 497-515.	1.8	545
2	Partitioning of platinum-group elements and Au between sulfide liquid and basalt and the origins of mantle-crust fractionation of the chalcophile elements. Geochimica Et Cosmochimica Acta, 2014, 125, 265-289.	1.6	402
3	The role of aqueous fluids in the slab-to-mantle transfer of boron, beryllium, and lithium during subduction: experiments and models. Geochimica Et Cosmochimica Acta, 1998, 62, 3337-3347.	1.6	220
4	Magmatic oxygen fugacity estimated using zircon-melt partitioning of cerium. Earth and Planetary Science Letters, 2016, 453, 260-266.	1.8	181
5	Experimental evidence for the origin of lead enrichment in convergent-margin magmas. Nature, 1995, 378, 54-56.	13.7	173
6	An experimental study of the solubility and partitioning of iridium, osmium and gold between olivine and silicate melt. Earth and Planetary Science Letters, 2005, 237, 855-872.	1.8	168
7	Diffusion of osmium in pyrrhotite and pyrite: implications for closure of the Re–Os isotopic system. Earth and Planetary Science Letters, 2000, 180, 399-413.	1.8	132
8	Kinetics of fluorine, chlorine and hydroxyl exchange in fluorapatite. Chemical Geology, 1993, 110, 195-210.	1.4	126
9	Re–Os fractionation by sulfide melt–silicate melt partitioning: A new spin. Chemical Geology, 2008, 248, 140-165.	1.4	114
10	Partitioning of fluorine and chlorine between apatite and aqueous fluids at high pressure and temperature: implications for the F and Cl content of highP-T fluids. Earth and Planetary Science Letters, 1993, 117, 251-263.	1.8	111
11	Partitioning of platinum-group elements (PGE) and chalcogens (Se, Te, As, Sb, Bi) between monosulfide-solid solution (MSS), intermediate solid solution (ISS) and sulfide liquid at controlled fO2–fS2 conditions. Geochimica Et Cosmochimica Acta, 2015, 159, 139-161.	1.6	107
12	Extreme crustal oxygen isotope signatures preserved in coesite in diamond. Nature, 2003, 423, 68-70.	13.7	102
13	Core formation and metal–silicate fractionation of osmium and iridium from gold. Nature Geoscience, 2009, 2, 798-801.	5.4	98
14	Effect of pressure, temperature, and oxygen fugacity on the metal-silicate partitioning of Te, Se, and S: Implications for earth differentiation. Geochimica Et Cosmochimica Acta, 2009, 73, 4598-4615.	1.6	98
15	Experimental Results on Fractionation of the Highly Siderophile Elements (HSE) at Variable Pressures and Temperatures during Planetary and Magmatic Differentiation. Reviews in Mineralogy and Geochemistry, 2016, 81, 1-87.	2.2	90
16	Effects of fO2, fS2, temperature, and melt composition on Fe-Ni exchange between olivine and sulfide liquid: implications for natural olivine–sulfide assemblages. Geochimica Et Cosmochimica Acta, 2003, 67, 2663-2681.	1.6	75
17	Cerium oxidation state in silicate melts: Combined f O 2 , temperature and compositional effects. Geochimica Et Cosmochimica Acta, 2015, 170, 173-187.	1.6	75
18	Se–Te fractionation by sulfide–silicate melt partitioning: Implications for the composition of mantle-derived magmas and their melting residues. Earth and Planetary Science Letters, 2015, 422, 45-57.	1.8	69

James M Brenan

#	Article	IF	CITATIONS
19	The solubility of ruthenium in sulfide liquid: implications for platinum group mineral stability and sulfide melt–silicate melt partitioning. Chemical Geology, 2002, 192, 163-181.	1.4	67
20	Arc to rift transitional volcanism in the Santa RosalÃa Region, Baja California Sur, Mexico. Journal of Volcanology and Geothermal Research, 2005, 142, 303-341.	0.8	66
21	Fluids in the lithosphere, 2. Experimental constraints on CO2 transport in dunite and quartzite at elevated P-T conditions with implications for mantle and crustal decarbonation processes. Earth and Planetary Science Letters, 1988, 91, 141-158.	1.8	64
22	Re–Os fractionation in magmatic sulfide melt by monosulfide solid solution. Earth and Planetary Science Letters, 2002, 199, 257-268.	1.8	57
23	Partitioning of trace elements between carbonate melt and clinopyroxene and olivine at mantle P-T conditions. Geochimica Et Cosmochimica Acta, 1991, 55, 2203-2214.	1.6	50
24	Partitioning of trace elements between olivine and aqueous fluids at highP-T conditions: implications for the effect of fluid composition on trace-element transport. Earth and Planetary Science Letters, 1991, 107, 672-688.	1.8	48
25	The solubility of Pd and Au in hydrous intermediate silicate melts: The effect of oxygen fugacity and the addition of Cl and S. Geochimica Et Cosmochimica Acta, 2018, 231, 15-29.	1.6	29
26	Diffusion of chlorine in fluid-bearing quartzite: effects of fluid composition and total porosity. Contributions To Mineralogy and Petrology, 1993, 115, 215-224.	1.2	27
27	Ubiquitous late veneer. Nature Geoscience, 2012, 5, 591-592.	5.4	24
28	Abundance of highly siderophile elements in lunar basalts controlled by iron sulfide melt. Nature Geoscience, 2019, 12, 701-706.	5.4	24
29	Measuring quartz solubility by in situ weight-loss determination using a hydrothermal diamond cell. Geochimica Et Cosmochimica Acta, 2004, 68, 5197-5204.	1.6	22
30	Controls on the solubility of rhenium in silicate melt: Implications for the osmium isotopic composition of Earth's mantle. Earth and Planetary Science Letters, 2013, 361, 320-332.	1.8	19
31	UPGRADING OF MAGMATIC SULFIDES, REVISITED. Economic Geology, 2020, 115, 1827-1833.	1.8	19
32	Speciation of arsenic and antimony in basaltic magmas. Geochimica Et Cosmochimica Acta, 2020, 276, 198-218.	1.6	17
33	Noninvasive Confocal Raman Imaging of Immiscible Liquids in a Porous Medium. Analytical Chemistry, 1997, 69, 45-50.	3.2	16
34	Iron isotope fractionation at the core–mantle boundary by thermodiffusion. Nature Geoscience, 2020, 13, 382-386.	5.4	13
35	Soret separation of highly siderophile elements in Fe–Ni–S melts: Implications for solid metal–liquid metal partitioning. Earth and Planetary Science Letters, 2010, 298, 299-305.	1.8	7
36	SYNTHESIS OF A CHALCOGENIDE GLASS STANDARD FOR LASER ABLATION-INDUCTIVELY COUPLED PLASMA-MASS SPECTROMETRY (LA-ICP-MS). Economic Geology, 2017, 112, 2005-2021.	1.8	3

#	Article	IF	CITATIONS
37	The magmatic forge. Nature Geoscience, 2020, 13, 716-717.	5.4	1
38	Melts and fluids: An overview of recent advances. Reviews of Geophysics, 1995, 33, 33.	9.0	0